In [13]:
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [28]:
url_template = "http://www.wunderground.com/history/airport/KJFK/{year}/{month}/2/MonthlyHistory.html?&reqdb.zip=&reqdb.magic=&reqdb.wmo=&format=1"
url = url_template.format(year=2014,month=11)
weather_today2014 = pd.read_csv(url,skiprows=1,parse_dates=True)

In [33]:
weather_today2014.head()
weather_today2014.loc[weather_today2014["EST"] == 2014-11-01]["Mean TemperatureF"].values


Out[33]:
array([], dtype=int64)

In [34]:
weather_today2014.dtypes


Out[34]:
EST                            object
Max TemperatureF                int64
Mean TemperatureF               int64
Min TemperatureF                int64
Max Dew PointF                  int64
MeanDew PointF                  int64
Min DewpointF                   int64
Max Humidity                    int64
 Mean Humidity                  int64
 Min Humidity                   int64
 Max Sea Level PressureIn     float64
 Mean Sea Level PressureIn    float64
 Min Sea Level PressureIn     float64
 Max VisibilityMiles            int64
 Mean VisibilityMiles           int64
 Min VisibilityMiles            int64
 Max Wind SpeedMPH              int64
 Mean Wind SpeedMPH             int64
 Max Gust SpeedMPH            float64
PrecipitationIn                object
 CloudCover                     int64
 Events                        object
 WindDirDegrees<br />          object
dtype: object

In [26]:
def get_today_historic(year,month,day):
    url_template = "http://www.wunderground.com/history/airport/KJFK/{year}/{month}/2/MonthlyHistory.html?&reqdb.zip=&reqdb.magic=&reqdb.wmo=&format=1"
    url = url_template.format(year=year,month=month)
    weather_today2014 = pd.read_csv(url,index_col="EST",skiprows=1,parse_dates=True)
    return weather_today2014.loc[weather_today2014.index.day == day]["Mean TemperatureF"].values

In [27]:
get_today_historic(2014,11,17)


Out[27]:
array([48])

In [ ]: