In [2]:
import pandas as pd
import numpy as np

In [59]:
df = pd.read_csv("daily users.csv",parse_dates=True)

In [60]:
df.head()


Out[60]:
Day Users
0 5/1/15 40,434
1 5/2/15 26,132
2 5/3/15 32,169
3 5/4/15 35,586
4 5/5/15 35,365

In [61]:
df.columns


Out[61]:
Index([u'Day', u'Users'], dtype='object')

In [ ]:


In [62]:
df["Day"] = pd.to_datetime(df["Day"])

In [63]:
df["Day"].dtype


Out[63]:
dtype('<M8[ns]')

In [64]:



Out[64]:
Day Users

In [65]:
df_masked = df[(df.Day > '2015-05-01') & (df.Day < '2015-05-05')]

In [69]:
df


Out[69]:
Day Users
0 2015-05-01 40,434
1 2015-05-02 26,132
2 2015-05-03 32,169
3 2015-05-04 35,586
4 2015-05-05 35,365
5 2015-05-06 33,851
6 2015-05-07 38,475
7 2015-05-08 54,304
8 2015-05-09 52,073
9 2015-05-10 42,085
10 2015-05-11 46,599
11 2015-05-12 66,755
12 2015-05-13 60,469
13 2015-05-14 45,566
14 2015-05-15 53,777
15 2015-05-16 36,404
16 2015-05-17 34,246
17 2015-05-18 51,926
18 2015-05-19 61,802
19 2015-05-20 64,421
20 2015-05-21 65,658
21 2015-05-22 43,693
22 2015-05-23 37,892
23 2015-05-24 34,667
24 2015-05-25 31,375
25 2015-05-26 48,070
26 2015-05-27 116,569
27 2015-05-28 157,395
28 2015-05-29 59,278
29 2015-05-30 58,530
... ... ...
243 2015-12-30 97,197
244 2015-12-31 78,765
245 2016-01-01 84,231
246 2016-01-02 63,889
247 2016-01-03 54,588
248 2016-01-04 84,144
249 2016-01-05 100,541
250 2016-01-06 232,881
251 2016-01-07 181,296
252 2016-01-08 105,137
253 2016-01-09 82,520
254 2016-01-10 79,769
255 2016-01-11 94,185
256 2016-01-12 112,466
257 2016-01-13 104,724
258 2016-01-14 96,629
259 2016-01-15 95,198
260 2016-01-16 72,692
261 2016-01-17 80,866
262 2016-01-18 126,618
263 2016-01-19 123,059
264 2016-01-20 104,145
265 2016-01-21 138,906
266 2016-01-22 128,393
267 2016-01-23 101,445
268 2016-01-24 117,821
269 2016-01-25 464,123
270 2016-01-26 259,802
271 2016-01-27 155,920
272 NaT 23,853,520

273 rows × 2 columns


In [87]:
df = df.ix[:271]

In [82]:
df


Out[82]:
Day Users
0 2015-05-01 40,434
1 2015-05-02 26,132
2 2015-05-03 32,169
3 2015-05-04 35,586
4 2015-05-05 35,365
5 2015-05-06 33,851
6 2015-05-07 38,475
7 2015-05-08 54,304
8 2015-05-09 52,073
9 2015-05-10 42,085
10 2015-05-11 46,599
11 2015-05-12 66,755
12 2015-05-13 60,469
13 2015-05-14 45,566
14 2015-05-15 53,777
15 2015-05-16 36,404
16 2015-05-17 34,246
17 2015-05-18 51,926
18 2015-05-19 61,802
19 2015-05-20 64,421
20 2015-05-21 65,658
21 2015-05-22 43,693
22 2015-05-23 37,892
23 2015-05-24 34,667
24 2015-05-25 31,375
25 2015-05-26 48,070
26 2015-05-27 116,569
27 2015-05-28 157,395
28 2015-05-29 59,278
29 2015-05-30 58,530
... ... ...
243 2015-12-30 97,197
244 2015-12-31 78,765
245 2016-01-01 84,231
246 2016-01-02 63,889
247 2016-01-03 54,588
248 2016-01-04 84,144
249 2016-01-05 100,541
250 2016-01-06 232,881
251 2016-01-07 181,296
252 2016-01-08 105,137
253 2016-01-09 82,520
254 2016-01-10 79,769
255 2016-01-11 94,185
256 2016-01-12 112,466
257 2016-01-13 104,724
258 2016-01-14 96,629
259 2016-01-15 95,198
260 2016-01-16 72,692
261 2016-01-17 80,866
262 2016-01-18 126,618
263 2016-01-19 123,059
264 2016-01-20 104,145
265 2016-01-21 138,906
266 2016-01-22 128,393
267 2016-01-23 101,445
268 2016-01-24 117,821
269 2016-01-25 464,123
270 2016-01-26 259,802
271 2016-01-27 155,920
272 NaT 23,853,520

273 rows × 2 columns


In [79]:
df.loc[]


Out[79]:
Day Users
0 2015-05-01 40,434
1 2015-05-02 26,132
2 2015-05-03 32,169
3 2015-05-04 35,586
4 2015-05-05 35,365
5 2015-05-06 33,851
6 2015-05-07 38,475
7 2015-05-08 54,304
8 2015-05-09 52,073
9 2015-05-10 42,085
10 2015-05-11 46,599
11 2015-05-12 66,755
12 2015-05-13 60,469
13 2015-05-14 45,566
14 2015-05-15 53,777
15 2015-05-16 36,404
16 2015-05-17 34,246
17 2015-05-18 51,926
18 2015-05-19 61,802
19 2015-05-20 64,421
20 2015-05-21 65,658
21 2015-05-22 43,693
22 2015-05-23 37,892
23 2015-05-24 34,667
24 2015-05-25 31,375
25 2015-05-26 48,070
26 2015-05-27 116,569
27 2015-05-28 157,395
28 2015-05-29 59,278
29 2015-05-30 58,530
... ... ...
243 2015-12-30 97,197
244 2015-12-31 78,765
245 2016-01-01 84,231
246 2016-01-02 63,889
247 2016-01-03 54,588
248 2016-01-04 84,144
249 2016-01-05 100,541
250 2016-01-06 232,881
251 2016-01-07 181,296
252 2016-01-08 105,137
253 2016-01-09 82,520
254 2016-01-10 79,769
255 2016-01-11 94,185
256 2016-01-12 112,466
257 2016-01-13 104,724
258 2016-01-14 96,629
259 2016-01-15 95,198
260 2016-01-16 72,692
261 2016-01-17 80,866
262 2016-01-18 126,618
263 2016-01-19 123,059
264 2016-01-20 104,145
265 2016-01-21 138,906
266 2016-01-22 128,393
267 2016-01-23 101,445
268 2016-01-24 117,821
269 2016-01-25 464,123
270 2016-01-26 259,802
271 2016-01-27 155,920
272 NaT 23,853,520

273 rows × 2 columns


In [92]:
pd.read_csv()


Out[92]:
Day Users
count 272 272
unique 272 272
top 2015-07-19 00:00:00 88,210
freq 1 1
first 2015-05-01 00:00:00 NaN
last 2016-01-27 00:00:00 NaN

In [ ]: