In [1]:
import pandas as pd

In [7]:
filename = "../data/auto-mpg.data"
column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin', 'name']
df = pd.read_csv(filename, delim_whitespace=True, names=column_names)

In [9]:
df.to_csv("../data/auto-mpg.csv")

In [20]:
filename = "../data/iris.data"
df = pd.read_csv(filename, header=False)


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-20-0f4d9e66e72c> in <module>()
      1 filename = "../data/iris.data"
----> 2 df = pd.read_csv(filename, header=False)

/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision)
    676                     skip_blank_lines=skip_blank_lines)
    677 
--> 678         return _read(filepath_or_buffer, kwds)
    679 
    680     parser_f.__name__ = name

/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    438 
    439     # Create the parser.
--> 440     parser = TextFileReader(filepath_or_buffer, **kwds)
    441 
    442     if chunksize or iterator:

/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    780         # might mutate self.engine
    781         self.engine = self._check_file_or_buffer(f, engine)
--> 782         self.options, self.engine = self._clean_options(options, engine)
    783 
    784         if 'has_index_names' in kwds:

/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py in _clean_options(self, options, engine)
    937         skiprows = options['skiprows']
    938 
--> 939         _validate_header_arg(options['header'])
    940 
    941         depr_warning = ''

/opt/conda/lib/python3.6/site-packages/pandas/io/common.py in _validate_header_arg(header)
    113 def _validate_header_arg(header):
    114     if isinstance(header, bool):
--> 115         raise TypeError("Passing a bool to header is invalid. "
    116                         "Use header=None for no header or "
    117                         "header=int or list-like of ints to specify "

TypeError: Passing a bool to header is invalid. Use header=None for no header or header=int or list-like of ints to specify the row(s) making up the column names

In [19]:
df


Out[19]:
5.1 3.5 1.4 0.2 Iris-setosa
0 4.9 3.0 1.4 0.2 Iris-setosa
1 4.7 3.2 1.3 0.2 Iris-setosa
2 4.6 3.1 1.5 0.2 Iris-setosa
3 5.0 3.6 1.4 0.2 Iris-setosa
4 5.4 3.9 1.7 0.4 Iris-setosa
5 4.6 3.4 1.4 0.3 Iris-setosa
6 5.0 3.4 1.5 0.2 Iris-setosa
7 4.4 2.9 1.4 0.2 Iris-setosa
8 4.9 3.1 1.5 0.1 Iris-setosa
9 5.4 3.7 1.5 0.2 Iris-setosa
10 4.8 3.4 1.6 0.2 Iris-setosa
11 4.8 3.0 1.4 0.1 Iris-setosa
12 4.3 3.0 1.1 0.1 Iris-setosa
13 5.8 4.0 1.2 0.2 Iris-setosa
14 5.7 4.4 1.5 0.4 Iris-setosa
15 5.4 3.9 1.3 0.4 Iris-setosa
16 5.1 3.5 1.4 0.3 Iris-setosa
17 5.7 3.8 1.7 0.3 Iris-setosa
18 5.1 3.8 1.5 0.3 Iris-setosa
19 5.4 3.4 1.7 0.2 Iris-setosa
20 5.1 3.7 1.5 0.4 Iris-setosa
21 4.6 3.6 1.0 0.2 Iris-setosa
22 5.1 3.3 1.7 0.5 Iris-setosa
23 4.8 3.4 1.9 0.2 Iris-setosa
24 5.0 3.0 1.6 0.2 Iris-setosa
25 5.0 3.4 1.6 0.4 Iris-setosa
26 5.2 3.5 1.5 0.2 Iris-setosa
27 5.2 3.4 1.4 0.2 Iris-setosa
28 4.7 3.2 1.6 0.2 Iris-setosa
29 4.8 3.1 1.6 0.2 Iris-setosa
... ... ... ... ... ...
119 6.9 3.2 5.7 2.3 Iris-virginica
120 5.6 2.8 4.9 2.0 Iris-virginica
121 7.7 2.8 6.7 2.0 Iris-virginica
122 6.3 2.7 4.9 1.8 Iris-virginica
123 6.7 3.3 5.7 2.1 Iris-virginica
124 7.2 3.2 6.0 1.8 Iris-virginica
125 6.2 2.8 4.8 1.8 Iris-virginica
126 6.1 3.0 4.9 1.8 Iris-virginica
127 6.4 2.8 5.6 2.1 Iris-virginica
128 7.2 3.0 5.8 1.6 Iris-virginica
129 7.4 2.8 6.1 1.9 Iris-virginica
130 7.9 3.8 6.4 2.0 Iris-virginica
131 6.4 2.8 5.6 2.2 Iris-virginica
132 6.3 2.8 5.1 1.5 Iris-virginica
133 6.1 2.6 5.6 1.4 Iris-virginica
134 7.7 3.0 6.1 2.3 Iris-virginica
135 6.3 3.4 5.6 2.4 Iris-virginica
136 6.4 3.1 5.5 1.8 Iris-virginica
137 6.0 3.0 4.8 1.8 Iris-virginica
138 6.9 3.1 5.4 2.1 Iris-virginica
139 6.7 3.1 5.6 2.4 Iris-virginica
140 6.9 3.1 5.1 2.3 Iris-virginica
141 5.8 2.7 5.1 1.9 Iris-virginica
142 6.8 3.2 5.9 2.3 Iris-virginica
143 6.7 3.3 5.7 2.5 Iris-virginica
144 6.7 3.0 5.2 2.3 Iris-virginica
145 6.3 2.5 5.0 1.9 Iris-virginica
146 6.5 3.0 5.2 2.0 Iris-virginica
147 6.2 3.4 5.4 2.3 Iris-virginica
148 5.9 3.0 5.1 1.8 Iris-virginica

149 rows × 5 columns