In [8]:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif'] = [u'simHei'] #用来正常显示中文标签
mpl.rcParams['axes.unicode_minus'] = False #用来正常显示负号
%matplotlib inline
#https://www.cnblogs.com/zhizhan/p/5615947.html
In [9]:
np.logspace(-3,2,10)
Out[9]:
In [10]:
np.linspace(-3,2,10)
Out[10]:
In [11]:
labels='frogs','hogs','dogs','logs'
sizes=15,20,45,10
colors='yellowgreen','gold','lightskyblue','lightcoral'
explode=0,0.1,0,0
plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct='%1.1f%%',shadow=True,startangle=50)
plt.axis('equal')
plt.show()
In [14]:
plt.colors
Out[14]:
In [16]:
x = [1,2,3,4,5]
y = [2.3,3.4,1.2,6.6,7.0]
plt.figure(figsize=(12,6))
plt.subplot(231)
plt.plot(x,y)
plt.title("plot")
plt.subplot(232)
plt.scatter(x, y)
plt.title("scatter")
plt.subplot(233)
plt.pie(y)
plt.title("pie")
plt.subplot(234)
plt.bar(x, y)
plt.title("bar")
# 2D data
import numpy as np
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z = Y**2 + X**2
plt.subplot(235)
plt.contour(X,Y,Z)
plt.colorbar()
plt.title("contour")
# read image
import matplotlib.image as mpimg
img=mpimg.imread('marvin.jpg')
plt.subplot(236)
plt.imshow(img)
plt.title("imshow")
plt.savefig("matplot_sample.jpg")
In [18]:
np.meshgrid(-5,5,1)
Out[18]:
In [20]:
np.arange(-5,5)
Out[20]:
In [21]:
points=np.arange(-5,5,0.01) #生成1000个间隔相等的点
xs,ys=np.meshgrid(points,points)
ys
import matplotlib.pyplot as plt
z=np.sqrt(xs**2+ys**2)
z
plt.imshow(z,cmap=plt.cm.gray);plt.colorbar();plt.title('image plot of $\sqrt{x^2+y^2}$ for a grid of values')
Out[21]:
In [22]:
x = [1,2,3,4]
y = [2,4,6,8]
In [24]:
plt.figure(figsize=(12,6))
Out[24]:
In [25]:
plt.subplot(231)
plt.plot(x,y)
Out[25]:
In [26]:
plt.bar(x,y)
Out[26]:
In [27]:
plt.scatter(x,y)
Out[27]:
In [28]:
plt.pie(y)
Out[28]:
In [29]:
plt.pie([2,2,2,2])
Out[29]:
In [45]:
points=np.arange(-2,3) #生成1000个间隔相等的点
points2 = np.arange(-6,4)
xs,ys=np.meshgrid(points,points)
ys
import matplotlib.pyplot as plt
z=xs**2+ys**2
In [46]:
points
Out[46]:
In [47]:
xs
Out[47]:
In [48]:
ys
Out[48]:
In [49]:
z
Out[49]:
In [50]:
plt.imshow(z)
Out[50]:
In [51]:
plt.plot(z)
Out[51]:
In [ ]: