In [2]:
import os
from lightning import Lightning
from numpy import random, asarray, linspace, corrcoef
from colorsys import hsv_to_rgb
from sklearn import datasets
import networkx as nx
In [ ]:
import matplotlib.pyplot as plt
import cPickle as pickle
In [5]:
lgn = Lightning(ipython=True, local=True)
Lightning.enable_ipython(lgn)
In [43]:
#lgn.graph(M)
M = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/bm_adj_steph_90_01_tree.csv","rb"),delimiter=",")
P = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/rois_xy_steph_90_01_tree.csv","rb"),delimiter=",")
lgn.graph(P[:,0], P[:,1],M)
Out[43]:
In [44]:
#bm_adj_steph_90_01_tree.csv
lgn.force(M)
Out[44]:
In [85]:
M = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/bm_adj_steph_180_tree.csv","rb"),delimiter=",")
P = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/rois_xy_steph_180_tree.csv","rb"),delimiter=",")
C = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/colors_steph_180_tree.csv","rb"),delimiter=",")
C = C*255
#lgn.force(M, color=C) -- use
#lgn.graph(P[:,0], P[:,1],M)
In [301]:
DEPTH_CONNECT_180 = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/DEPTH_CONNECT_steph_180_tree.csv", "rb"),delimiter=",")
DEPTH_COLORS = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/DEPTH_COLORS.csv", "rb"),delimiter=",")
DEPTH_COLORS = DEPTH_COLORS*255
lgn.matrix(DEPTH_CONNECT_180, colormap="Purples", numbers=True,
row_labels=['V1', 'V1','LM','LM','RL','RL','RL'], column_labels=['V1', 'V1','LM','LM','RL','RL','RL'])
Out[301]:
In [ ]:
#not good:
#depth_positions = np.array([[18,6],[26,6],[0,0],[2,2],[40,0],[44,2],[46,4]],np.int32)
#lgn.graph(depth_positions[:,0], depth_positions[:,1],DEPTH_CONNECT_180,
# color=DEPTH_COLORS,tooltips=True, labels=['V1', 'V1','LM','LM','RL','RL','RL'])
#better, but not super great!
#lgn.force(DEPTH_CONNECT_180,
# color=DEPTH_COLORS,tooltips=True,
# labels=['V1_1', 'V1_2','LM_1','LM_2','RL_1','RL_2','RL_3'])
In [193]:
#roi_info = pickle.load(open('first_file.p', 'r'))
#roi_info
In [188]:
all_roi_info = pickle.load(open('all_roi_info.pky', 'r'))
#all_roi_info?
#all_roi_info?
#pickle.dump(all_roi_info,open('all_roi_info.pky','w'))
Out[188]:
In [280]:
viz_path = "/Users/etaralova/data/steph_225_tree/"
for expt_id,value in all_roi_info.iteritems():
print expt_id
EXPT_IDS_STRING = all_roi_info.keys()
EXPT_IDS_STRING
Out[280]:
In [307]:
from IPython.display import display, Javascript, HTML
In [308]:
ORIENT = 90
for depth_ids in (i for i in range(1,8)):
e_i = 0
#for expt_id,value in all_roi_info.iteritems():
#print expt_id
#e_i+=1
expt_id = EXPT_IDS_STRING[depth_ids-1]
print "EXpt: ", expt_id, "depth: ", depth_ids
#"483061828"
high_resp = np.array(all_roi_info[expt_id].ROI)
high_resp
M = np.loadtxt(open(viz_path+"/bm_adj_steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree.csv","rb"),delimiter=",")
C = np.loadtxt(open(viz_path+"/colors_steph_"+str(ORIENT)+"_tree.csv","rb"),delimiter=",")
C = C*255
C_orig = C.copy()
#lgn.force(M,color=C)
C = C_orig.copy()
C[high_resp,...] = [255, 0, 0]
viz = lgn.force(M,color=C,
description="steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree + high response")
viz.save_html("steph_"+str(ORIENT)+"_"+
"%02d"%depth_ids+"_tree_hi_resp.html",
overwrite=True)
print "SAVED: " + "steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree_hi_resp.html"
orient_sel = np.where(all_roi_info[expt_id].Orientation == ORIENT)[0]
orient_sel
C = C_orig.copy()
C[orient_sel,...] = [0, 255, 0]
viz = lgn.force(M,color=C,
description="steph_90_01_tree + orient select")
#viz.save_html("steph_"+str(ORIENT)+"_"+
# "%02d"%depth_ids+"_tree_orient_sel.html",
# overwrite=True)
display(HTML(viz.get_html()))
#print "SAVED: " + "steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree_orient_sel.html"
In [305]:
#np.array(all_roi_info['483061828'].ROI)
Out[305]:
In [284]:
#o_string = "%02d" % ORIENT
#o_string
#expt_ids = [i for i in range(1,8)]
#expt_ids
M = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/bm_adj_steph_90_01_tree.csv","rb"),delimiter=",")
P = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/rois_xy_steph_90_01_tree.csv","rb"),delimiter=",")
C = np.loadtxt(open("/Users/etaralova/data/steph_225/viz/colors_steph_90_01_tree.csv","rb"),delimiter=",")
C = C*255
C_orig = C.copy()
Out[284]:
In [285]:
C_orig = C.copy()
In [286]:
C = C_orig.copy()
C[orient_sel,...] = [0, 255, 0]
Z = np.zeros_like(M)
lgn.graph(P[:,0], P[:,1],Z,color=C)
Out[286]: