In [1]:
import os
from lightning import Lightning

from numpy import random, asarray, linspace, corrcoef
from colorsys import hsv_to_rgb
from sklearn import datasets
import networkx as nx

In [5]:
import matplotlib.pyplot as plt
import cPickle as pickle
import numpy as np

In [3]:
lgn = Lightning(ipython=True, local=True)
Lightning.enable_ipython(lgn)


Lightning initialized
Running local mode, some functionality limited.

Running local mode, some functionality limited.


In [8]:
#lgn.graph(M)
#M = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/steph_90_01_tree_neuron_analysis/bm_adj_483061828.csv","rb"),delimiter=",")
#P = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/steph_90_01_tree_neuron_analysis/rois_xy_483061828.csv","rb"),delimiter=",")
#lgn.graph(P[:,0], P[:,1],M)

In [9]:
#bm_adj_steph_90_01_tree.csv
#lgn.force(M)

In [11]:
M = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/steph_90_01_tree_neuron_analysis/bm_adj_483061828.csv","rb"),delimiter=",")
P = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/steph_90_01_tree_neuron_analysis/rois_xy_483061828.csv","rb"),delimiter=",")
C = np.loadtxt(open("/Users/etaralova/data/steph_225_tree/steph_90_01_tree_neuron_analysis/colors_483061828.csv","rb"),delimiter=",")
C = C*255
lgn.force(M, color=C) #-- use
#lgn.graph(P[:,0], P[:,1],M)


Out[11]:

In [13]:
lgn.graph(P[:,0], P[:,1],M,color=C)
#if you don't want edges, use an empty matrix: Z = np.zeros_like(M)


Out[13]:

In [ ]:
viz = lgn.force(M,color=C,
                description="steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree + high response")
viz.save_html("steph_"+str(ORIENT)+"_"+
              "%02d"%depth_ids+"_tree_hi_resp.html",
             overwrite=True)
print "SAVED: " + "steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree_hi_resp.html"

In [307]:
from IPython.display import display, Javascript, HTML

In [308]:
ORIENT = 90

for depth_ids in (i for i in range(1,8)):
    e_i = 0
    #for expt_id,value in all_roi_info.iteritems():
        #print expt_id
        #e_i+=1
    expt_id = EXPT_IDS_STRING[depth_ids-1] 
    print "EXpt: ", expt_id, "depth: ", depth_ids
    #"483061828"
    high_resp = np.array(all_roi_info[expt_id].ROI)
    high_resp
    M = np.loadtxt(open(viz_path+"/bm_adj_steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree.csv","rb"),delimiter=",")
    C = np.loadtxt(open(viz_path+"/colors_steph_"+str(ORIENT)+"_tree.csv","rb"),delimiter=",")
    C = C*255
    C_orig = C.copy()
    #lgn.force(M,color=C)
    C = C_orig.copy()
    C[high_resp,...] = [255, 0, 0]
    viz = lgn.force(M,color=C,
                    description="steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree + high response")
    viz.save_html("steph_"+str(ORIENT)+"_"+
                  "%02d"%depth_ids+"_tree_hi_resp.html",
                 overwrite=True)
    print "SAVED: " + "steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree_hi_resp.html"
    orient_sel = np.where(all_roi_info[expt_id].Orientation == ORIENT)[0]
    orient_sel
    C = C_orig.copy()
    C[orient_sel,...] = [0, 255, 0]
    viz = lgn.force(M,color=C,
                    description="steph_90_01_tree + orient select")
    #viz.save_html("steph_"+str(ORIENT)+"_"+
    #              "%02d"%depth_ids+"_tree_orient_sel.html",
    #             overwrite=True)
    display(HTML(viz.get_html()))
    #print "SAVED: " + "steph_"+str(ORIENT)+"_"+"%02d"%depth_ids+"_tree_orient_sel.html"


EXpt:  483061828 depth:  1
SAVED: steph_90_01_tree_hi_resp.html
EXpt:  483020476 depth:  2
SAVED: steph_90_02_tree_hi_resp.html
EXpt:  483056972 depth:  3
SAVED: steph_90_03_tree_hi_resp.html
EXpt:  483059231 depth:  4
SAVED: steph_90_04_tree_hi_resp.html
EXpt:  482923718 depth:  5
SAVED: steph_90_05_tree_hi_resp.html
EXpt:  482924833 depth:  6
SAVED: steph_90_06_tree_hi_resp.html
EXpt:  483020038 depth:  7
SAVED: steph_90_07_tree_hi_resp.html