In [ ]:
import tensorflow as tf
In [ ]:
from tensorflow.contrib.layers import batch_norm
In [ ]:
n_inputs = 28 * 28
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10
In [ ]:
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
In [ ]:
y = tf.placeholder(dtype=tf.int64, shape=(None), name='y')
In [ ]:
is_training = tf.placeholder(tf.bool, shape=(), name='is_training')
In [ ]:
bn_params = {
'is_training': is_training,
'decay': 0.99,
'updates_collections': None,
}
In [ ]:
from tensorflow.contrib.layers import fully_connected
In [ ]:
# hidden1 = fully_connected(X, n_hidden1, scope='hidden1', normalizer_fn=batch_norm, normalizer_params=bn_params)
# hidden2 = fully_connected(hidden1, n_hidden2, scope='hidden2', normalizer_fn=batch_norm, normalizer_params=bn_params)
# logits = fully_connected(hidden2, n_outputs, scope='outputs', activation_fn=None, normalizer_fn=batch_norm, normalizer_params=bn_params)
In [ ]:
with tf.contrib.framework.arg_scope(
[fully_connected],
normalizer_fn=batch_norm,
normalizer_params=bn_params):
hidden1 = fully_connected(X, n_hidden1, scope='hidden1')
hidden2 = fully_connected(hidden1, n_hidden2, scope='hidden2')
logits = fully_connected(hidden2, n_outputs, scope='outputs', activation_fn=None)
In [ ]:
with tf.name_scope('loss'):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
In [ ]:
learning_rate = 0.01
with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
In [ ]:
with tf.name_scope('eval'):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
In [ ]:
init = tf.global_variables_initializer()
saver = tf.train.Saver()
In [ ]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/data/')
In [ ]:
n_epochs = 10
batch_size = 50
In [ ]:
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size=batch_size)
sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})
acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})
acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})
print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)
save_path = saver.save(sess, './my_model_final.ckpt')
In [ ]: