In [1]:
setwd('/Users/erinlarson/Dropbox/Documents/GIT/DDESSS_Stream_Dream_Team')

data<-read.csv("WorkingDataSet.csv")

library("dplyr")


Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union


In [2]:
t(data[1,])


1
X1
ResultMeasure20
STRAHLER22.4
DrainageAreaMeasure_MeasureValue195
HUCEightDigitCode15060103
date2001-02-07T00:00:00Z
ResultSampleFractionTextTotal
PFOR273.918
PWETL20.01
PURB20.132
PAGT20.076
LatitudeMeasure33.57311
LongitudeMeasure-110.9012
MonitoringLocationIdentifierUSGS-09498400

In [3]:
TotalP <-subset(data, ResultSampleFractionText=="Total")

group_by(TotalP, MonitoringLocationIdentifier) %>% 
    summarise(AvgTotal_P = mean(ResultMeasure2, na.rm = TRUE),
              SDTotal_P = sd(ResultMeasure2, na.rm = TRUE),
              PFOR2 = mean(PFOR2, na.rm=TRUE),
             Lat = mean(LatitudeMeasure, na.rm = TRUE),
              Long = mean(LongitudeMeasure, na.rm=TRUE)
             ) %>% write.csv("Avg_TotalP_LatLong.csv")

In [ ]:
TDP <-subset(data, ResultSampleFractionText=="Total")

group_by(TotalP, MonitoringLocationIdentifier) %>% 
    summarise(AvgTotal_P = mean(ResultMeasure2, na.rm = TRUE),
              SDTotal_P = sd(ResultMeasure2, na.rm = TRUE),
             Lat = mean(LatitudeMeasure, na.rm = TRUE),
              Long = mean(LongitudeMeasure, na.rm=TRUE)
             ) %>% write.csv("Avg_TotalP_LatLong.csv")