In [2]:
%matplotlib inline

In [3]:
import matplotlib.pyplot as plt

In [4]:
import numpy
import numpy as np
import pandas
import pandas as pd

In [5]:
import os, sys
print(os.getcwd() )
print( os.listdir( "../data/") )


/home/topolo/PropD/cuBlackDream/examples
['ex2data2.txt', 'ex1data1.txt', 'ex1data2.txt', 'Xex1data2.npy', 'ex1data2.npy', 'ex2data1.txt']

In [6]:
ex2data1DF = pd.read_csv("../data/ex2data1.txt",header=None)
ex2data2DF = pd.read_csv("../data/ex2data2.txt", header=None)

In [7]:
Xyex2data1 = ex2data1DF.values
Xex2data1 = Xyex2data1[:,0:-1]
yex2data1 = Xyex2data1[:,-1]
Xyex2data2 = ex2data2DF.values
Xex2data2 = Xyex2data2[:,0:-1]
yex2data2 = Xyex2data2[:,-1]
print(Xex2data1.shape)
print(yex2data1.shape)
print(Xex2data2.shape)
print(yex2data2.shape)
Xex2data1 = np.vstack( Xex2data1 )
yex2data1 = np.vstack( yex2data1 )
yex2data2 = np.vstack( yex2data2 )
print(Xex2data1.shape)
print(yex2data1.shape)
print(Xex2data2.shape)
print(yex2data2.shape)


(100, 2)
(100,)
(118, 2)
(118,)
(100, 2)
(100, 1)
(118, 2)
(118, 1)

In [8]:
ex2data1DF


Out[8]:
0 1 2
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
5 45.083277 56.316372 0
6 61.106665 96.511426 1
7 75.024746 46.554014 1
8 76.098787 87.420570 1
9 84.432820 43.533393 1
10 95.861555 38.225278 0
11 75.013658 30.603263 0
12 82.307053 76.481963 1
13 69.364589 97.718692 1
14 39.538339 76.036811 0
15 53.971052 89.207350 1
16 69.070144 52.740470 1
17 67.946855 46.678574 0
18 70.661510 92.927138 1
19 76.978784 47.575964 1
20 67.372028 42.838438 0
21 89.676776 65.799366 1
22 50.534788 48.855812 0
23 34.212061 44.209529 0
24 77.924091 68.972360 1
25 62.271014 69.954458 1
26 80.190181 44.821629 1
27 93.114389 38.800670 0
28 61.830206 50.256108 0
29 38.785804 64.995681 0
... ... ... ...
70 32.722833 43.307173 0
71 64.039320 78.031688 1
72 72.346494 96.227593 1
73 60.457886 73.094998 1
74 58.840956 75.858448 1
75 99.827858 72.369252 1
76 47.264269 88.475865 1
77 50.458160 75.809860 1
78 60.455556 42.508409 0
79 82.226662 42.719879 0
80 88.913896 69.803789 1
81 94.834507 45.694307 1
82 67.319257 66.589353 1
83 57.238706 59.514282 1
84 80.366756 90.960148 1
85 68.468522 85.594307 1
86 42.075455 78.844786 0
87 75.477702 90.424539 1
88 78.635424 96.647427 1
89 52.348004 60.769505 0
90 94.094331 77.159105 1
91 90.448551 87.508792 1
92 55.482161 35.570703 0
93 74.492692 84.845137 1
94 89.845807 45.358284 1
95 83.489163 48.380286 1
96 42.261701 87.103851 1
97 99.315009 68.775409 1
98 55.340018 64.931938 1
99 74.775893 89.529813 1

100 rows × 3 columns


In [ ]: