In [1]:
from bokeh.plotting import output_notebook

output_notebook()

%load_ext autoreload
%autoreload 2
%matplotlib inline
%config InlineBackend.figure_format = 'retina'


Loading BokehJS ...

In [2]:
import pandas as pd
embeddings = pd.read_csv('data/metadata_with_embeddings.csv', index_col=0, parse_dates=['Collection Date'])
embeddings.head()

data = embeddings[['Collection Date', 'coords0', 'coords1', 'coords2']].set_index('Collection Date').resample('M').mean()
data.head()


Out[2]:
coords0 coords1 coords2
Collection Date
2000-01-31 0.528481 -3.737833 -0.502630
2000-02-29 0.075133 -3.591450 -0.312657
2000-03-31 0.322234 -3.725801 -0.207332
2000-04-30 NaN NaN NaN
2000-05-31 0.011306 -3.379667 -0.303968

In [3]:
from bokeh.palettes import viridis, inferno

palette = inferno(len(data))

In [51]:
from bokeh.plotting import figure, show
from bokeh.models import LogColorMapper, LogTicker, ColorBar

c = LogColorMapper(palette=palette, low=min(data.index).year, high=max(data.index).year)
cb = ColorBar(color_mapper=c, ticker=LogTicker(), location=(20,0), label_standoff=-12)
cb.minor_tick_line_width = 0
cb.width = 10

p = figure(webgl=True, plot_width=350, plot_height=300)
p.scatter(x=data['coords0'], y=data['coords1'], color=palette)

p.add_layout(cb, 'left')

show(p)



In [26]:
tables = pd.read_html('https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm')
df = tables[0]
df.columns = df.loc[0, :]
df = df.drop(0).reset_index(drop=True)
df.columns = ['Season', 'Reference', 'Study Sites', 'Number of Patients', 'Overall VE', 'CI']
df['Season Start'] = df['Season'].str.split('-').str[0].apply(lambda x: int(x))

p = figure(plot_width=300, plot_height=250)
p.line(x=df['Season Start'], y=df['Overall VE'])
show(p)



In [ ]:


In [ ]: