In [6]:
import pymc3 as pm
import numpy as np
from scipy.stats import poisson, binom, norm
%matplotlib inline
In [20]:
data_1k = norm.rvs(50, 2, size=1000)
data_100 = norm.rvs(50, 2, size=100)
data_1 = norm.rvs(50, 2, size=1)
In [22]:
with pm.Model() as model:
mu = pm.Exponential('mu', lam=1)
sd = pm.Exponential('sig', lam=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data_1)
start = {'mu':1, 'sig': 1}
step = pm.Metropolis()
trace = pm.sample(1000, step=step, start=start)
pm.traceplot(trace)
Out[22]:
In [21]:
with pm.Model() as model:
mu = pm.Exponential('mu', lam=1)
sd = pm.Exponential('sig', lam=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data_1k)
start = {'mu':1, 'sig': 1}
step = pm.Metropolis()
trace = pm.sample(1000, step=step, start=start)
pm.traceplot(trace)
Out[21]:
In [23]:
with pm.Model() as model:
mu = pm.Exponential('mu', lam=1)
sd = pm.Exponential('sig', lam=1)
n = pm.Normal('n', mu=mu, sd=sd, observed=data_100)
start = {'mu':1, 'sig': 1}
step = pm.Metropolis()
trace = pm.sample(1000, step=step, start=start)
pm.traceplot(trace)
Out[23]:
In [ ]: