In [25]:
import numpy as np
import cPickle as pickle
import matplotlib.pyplot as plt
plt.style.use('bmh')
%matplotlib inline
In [31]:
LNHS_FILE = '../ln_hs_training_losses.pkl'
lnhs_losses = pickle.load(open(LN_HS_FILE, 'rb'))
SIMPLE_FILE = '../training_losses.pkl'
simple_losses = pickle.load(open(SIMPLE_FILE, 'rb'))
# VAL_LNHS_FILE = '../ln_hs_validation_losses.pkl'
# val_lnhs_losses = pickle.load(open(VAL_LNHS_FILE, 'rb'))
# VAL_SIMPLE_LOSS = '../validation_losses.pkl'
# val_simple_losses = pickle.load(open(VAL_SIMPLE_LOSS, 'rb'))
all_lossess = {'Training - LN HS':lnhs_losses,
'Training - Simple':simple_losses}#,
# 'Validation - LN HS':val_lnhs_losses,
# 'Validation - Simple':val_simple_losses}
plots = ln_hs_losses.keys()
In [33]:
fig = plt.figure(figsize=(16, 24))
for i, pl in enumerate(plots):
ax = fig.add_subplot(len(plots), 1, i + 1)
max_mean = -np.infty
for loss in all_lossess.keys():
for ep in all_lossess[loss][pl].keys():
ax.plot(np.linspace(ep - 1, ep, len(all_lossess[loss][pl][ep])), all_lossess[loss][pl][ep],
label='{} {}'.format(loss, pl), alpha=0.8)
max_mean = np.max([max_mean, np.mean(all_lossess[loss][pl][ep])])
ax.set_ylim([0, 2 * max_mean])
ax.set_title(pl.capitalize())
ax.legend()
plt.show()
In [ ]: