In [1]:
import pandas as pd
import numpy as np

In [4]:
print "hi" #comment me


hi

In [9]:


In [15]:
print ("These are the data types in Building Permits\n" + str(bp_file.dtypes))


These are the data types in Building Permits
ID                         int64
PERMIT#                   object
  PERMIT_TYPE             object
         ISSUE_DATE       object
        ESTIMATED_COST    object
         AMOUNT_WAIVED    object
   AMOUNT_PAID            object
    TOTAL_FEE             object
STREET_NUMBER              int64
STREET DIRECTION          object
STREET_NAME               object
  SUFFIX                  object
WORK_DESCRIPTION          object
   PIN1                   object
   PIN2                   object
...
CONTRACTOR_14_ADDRESS     object
CONTRACTOR_14_CITY        object
CONTRACTOR_14_STATE       object
CONTRACTOR_14_ZIPCODE     object
CONTRACTOR_14_PHONE       object
CONTRACTOR_15_TYPE        object
CONTRACTOR_15_NAME        object
CONTRACTOR_15_ADDRESS     object
CONTRACTOR_15_CITY        object
CONTRACTOR_15_STATE       object
CONTRACTOR_15_ZIPCODE    float64
CONTRACTOR_15_PHONE      float64
LATITUDE                 float64
LONGITUDE                float64
LOCATION                  object
Length: 131, dtype: object

In [17]:
bp_file.head()


Out[17]:
ID PERMIT# PERMIT_TYPE ISSUE_DATE ESTIMATED_COST AMOUNT_WAIVED AMOUNT_PAID TOTAL_FEE STREET_NUMBER STREET DIRECTION ... CONTRACTOR_15_TYPE CONTRACTOR_15_NAME CONTRACTOR_15_ADDRESS CONTRACTOR_15_CITY CONTRACTOR_15_STATE CONTRACTOR_15_ZIPCODE CONTRACTOR_15_PHONE LATITUDE LONGITUDE LOCATION
0 911610 EV000008 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 406 N ... NaN NaN NaN NaN NaN NaN NaN 41.889204 -87.654722 (41.88920399822612, -87.65472214051763)
1 911617 EV000015 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 1664 N ... NaN NaN NaN NaN NaN NaN NaN 41.912568 -87.662167 (41.91256808104945, -87.66216724918101)
2 911654 EV000074 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $105.00 $105.00 536 W ... NaN NaN NaN NaN NaN NaN NaN 41.948277 -87.644878 (41.948276832456244, -87.64487812656894)
3 911698 EV000113 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 3255 W ... NaN NaN NaN NaN NaN NaN NaN 41.926405 -87.709663 (41.92640488498051, -87.70966289254984)
4 911713 EV000128 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 4177 S ... NaN NaN NaN NaN NaN NaN NaN 41.817495 -87.698459 (41.817494775576236, -87.69845934497967)

5 rows × 131 columns


In [18]:
bp_file.columns


Out[18]:
Index([u'ID', u'PERMIT#', u'  PERMIT_TYPE', u'         ISSUE_DATE', u'        ESTIMATED_COST', u'         AMOUNT_WAIVED', u'   AMOUNT_PAID', u'    TOTAL_FEE', u'STREET_NUMBER', u'STREET DIRECTION', u'STREET_NAME', u'  SUFFIX', u'WORK_DESCRIPTION', u'   PIN1', u'   PIN2', u'  PIN3', u'  PIN4', u' PIN5', u' PIN6', u' PIN7', u' PIN8', u' PIN9', u'     PIN10', u'CONTRACTOR_1_TYPE', u'CONTRACTOR_1_NAME', u'CONTRACTOR_1_ADDRESS', u'CONTRACTOR_1_CITY', u'CONTRACTOR_1_STATE', u'CONTRACTOR_1_ZIPCODE', u'CONTRACTOR_1_PHONE', u'CONTRACTOR_2_TYPE', u'CONTRACTOR_2_NAME', u'CONTRACTOR_2_ADDRESS', u'CONTRACTOR_2_CITY', u'CONTRACTOR_2_STATE', u'CONTRACTOR_2_ZIPCODE', u'CONTRACTOR_2_PHONE', u'CONTRACTOR_3_TYPE', u'CONTRACTOR_3_NAME', u'CONTRACTOR_3_ADDRESS', u'CONTRACTOR_3_CITY', u'CONTRACTOR_3_STATE', u'CONTRACTOR_3_ZIPCODE', u'CONTRACTOR_3_PHONE', u'CONTRACTOR_4_TYPE', u'CONTRACTOR_4_NAME', u'CONTRACTOR_4_ADDRESS', u'CONTRACTOR_4_CITY', u'CONTRACTOR_4_STATE', u'CONTRACTOR_4_ZIPCODE', u'CONTRACTOR_4_PHONE', u'CONTRACTOR_5_TYPE', u'CONTRACTOR_5_NAME', u'CONTRACTOR_5_ADDRESS', u'CONTRACTOR_5_CITY', u'CONTRACTOR_5_STATE', u'CONTRACTOR_5_ZIPCODE', u'CONTRACTOR_5_PHONE', u'CONTRACTOR_6_TYPE', u'CONTRACTOR_6_NAME', u'CONTRACTOR_6_ADDRESS', u'CONTRACTOR_6_CITY', u'CONTRACTOR_6_STATE', u'CONTRACTOR_6_ZIPCODE', u'CONTRACTOR_6_PHONE', u'CONTRACTOR_7_TYPE', u'CONTRACTOR_7_NAME', u'CONTRACTOR_7_ADDRESS', u'CONTRACTOR_7_CITY', u'CONTRACTOR_7_STATE', u'CONTRACTOR_7_ZIPCODE', u'CONTRACTOR_7_PHONE', u'CONTRACTOR_8_TYPE', u'CONTRACTOR_8_NAME', u'CONTRACTOR_8_ADDRESS', u'CONTRACTOR_8_CITY', u'CONTRACTOR_8_STATE', u'CONTRACTOR_8_ZIPCODE', u'CONTRACTOR_8_PHONE', u'CONTRACTOR_9_TYPE', u'CONTRACTOR_9_NAME', u'CONTRACTOR_9_ADDRESS', u'CONTRACTOR_9_CITY', u'CONTRACTOR_9_STATE', u'CONTRACTOR_9_ZIPCODE', u'CONTRACTOR_9_PHONE', u'CONTRACTOR_10_TYPE', u'CONTRACTOR_10_NAME', u'CONTRACTOR_10_ADDRESS', u'CONTRACTOR_10_CITY', u'CONTRACTOR_10_STATE', u'CONTRACTOR_10_ZIPCODE', u'CONTRACTOR_10_PHONE', u'CONTRACTOR_11_TYPE', u'CONTRACTOR_11_NAME', u'CONTRACTOR_11_ADDRESS', u'CONTRACTOR_11_CITY', u'CONTRACTOR_11_STATE', u'CONTRACTOR_11_ZIPCODE', u'CONTRACTOR_11_PHONE', ...], dtype='object')

In [39]:
def removeSpace(file):
    new_names=[]
    for col_name in file.columns:
        col_name=str.lower(col_name)
        col_name = str.strip(col_name)
        str.replace(col_name,'\s','_')
        new_names[len(new_names):]=[col_name]
        
        
    file.columns = new_names

In [40]:
removeSpace(bp_file)
print bp_file.columns


Index([u'id', u'permit#', u'permit_type', u'issue_date', u'estimated_cost', u'amount_waived', u'amount_paid', u'total_fee', u'street_number', u'street direction', u'street_name', u'suffix', u'work_description', u'pin1', u'pin2', u'pin3', u'pin4', u'pin5', u'pin6', u'pin7', u'pin8', u'pin9', u'pin10', u'contractor_1_type', u'contractor_1_name', u'contractor_1_address', u'contractor_1_city', u'contractor_1_state', u'contractor_1_zipcode', u'contractor_1_phone', u'contractor_2_type', u'contractor_2_name', u'contractor_2_address', u'contractor_2_city', u'contractor_2_state', u'contractor_2_zipcode', u'contractor_2_phone', u'contractor_3_type', u'contractor_3_name', u'contractor_3_address', u'contractor_3_city', u'contractor_3_state', u'contractor_3_zipcode', u'contractor_3_phone', u'contractor_4_type', u'contractor_4_name', u'contractor_4_address', u'contractor_4_city', u'contractor_4_state', u'contractor_4_zipcode', u'contractor_4_phone', u'contractor_5_type', u'contractor_5_name', u'contractor_5_address', u'contractor_5_city', u'contractor_5_state', u'contractor_5_zipcode', u'contractor_5_phone', u'contractor_6_type', u'contractor_6_name', u'contractor_6_address', u'contractor_6_city', u'contractor_6_state', u'contractor_6_zipcode', u'contractor_6_phone', u'contractor_7_type', u'contractor_7_name', u'contractor_7_address', u'contractor_7_city', u'contractor_7_state', u'contractor_7_zipcode', u'contractor_7_phone', u'contractor_8_type', u'contractor_8_name', u'contractor_8_address', u'contractor_8_city', u'contractor_8_state', u'contractor_8_zipcode', u'contractor_8_phone', u'contractor_9_type', u'contractor_9_name', u'contractor_9_address', u'contractor_9_city', u'contractor_9_state', u'contractor_9_zipcode', u'contractor_9_phone', u'contractor_10_type', u'contractor_10_name', u'contractor_10_address', u'contractor_10_city', u'contractor_10_state', u'contractor_10_zipcode', u'contractor_10_phone', u'contractor_11_type', u'contractor_11_name', u'contractor_11_address', u'contractor_11_city', u'contractor_11_state', u'contractor_11_zipcode', u'contractor_11_phone', ...], dtype='object')

In [43]:
bp_file.issue_date = pd.to_datetime(bp_file.issue_date)
bp_file.issue_date.head()


Out[43]:
0   NaT
1   NaT
2   NaT
3   NaT
4   NaT
Name: issue_date, dtype: datetime64[ns]

In [44]:
pd.value_counts(bp_file.id)


Out[44]:
2355917    1
2634579    1
2134855    1
2157384    1
1637194    1
1635147    1
2149196    1
1622861    1
2108240    1
2630481    1
2112338    1
2626391    1
2431251    1
2653018    1
2518408    1
...
2636973    1
2245665    1
2108591    1
2147506    1
2336984    1
2381100    1
2157751    1
2476687    1
2133179    1
2143420    1
2301850    1
2491474    1
1791168    1
2311362    1
2378075    1
Length: 390864, dtype: int64

In [46]:
bp_file.describe()


Out[46]:
id street_number contractor_15_zipcode contractor_15_phone latitude longitude
count 390864.000000 390864.000000 1 0 389725.000000 389725.000000
mean 2160625.416012 3494.807035 60641 NaN 41.869630 -87.673014
std 309811.615913 2982.947473 NaN NaN 0.084681 0.059308
min 911610.000000 1.000000 60641 NaN 41.644702 -87.914534
25% 1881983.250000 1006.000000 60641 NaN 41.801236 -87.707729
50% 2181551.000000 2744.000000 60641 NaN 41.885822 -87.663094
75% 2437348.750000 5411.000000 60641 NaN 41.931697 -87.631885
max 2660888.000000 111601.000000 60641 NaN 42.022645 -87.524677

In [48]:
bp_file.groupby("latitude").mean()


Out[48]:
id street_number contractor_15_zipcode contractor_15_phone longitude
latitude
41.644702 1659976.000000 244 NaN NaN -87.615151
41.644712 2055233.908046 440 NaN NaN -87.610545
41.644713 2032439.000000 304 NaN NaN -87.614148
41.644713 2298827.000000 430 NaN NaN -87.610893
41.644715 2117366.000000 306 NaN NaN -87.614075
41.644717 2153995.134454 612 NaN NaN -87.606793
41.644722 2013874.000000 826 NaN NaN -87.601401
41.644746 1974911.666667 1220 NaN NaN -87.592011
41.644798 2428705.395349 13707 NaN NaN -87.574634
41.645098 2203029.000000 13779 NaN NaN -87.614856
41.645528 2338712.666667 13733 NaN NaN -87.539888
41.645547 2187627.500000 13750 NaN NaN -87.615869
41.645671 1806449.000000 13744 NaN NaN -87.616035
41.645743 1973962.000000 13749 NaN NaN -87.615717
41.646033 2323624.000000 13735 NaN NaN -87.616104
41.646075 2381503.000000 13733 NaN NaN -87.616160
41.646272 2089645.000000 13700 NaN NaN -87.540225
41.646489 1875196.000000 13713 NaN NaN -87.616713
41.646662 2078135.000000 13685 NaN NaN -87.543379
41.646722 2486828.000000 13651 NaN NaN -87.542684
41.646885 1866683.500000 13673 NaN NaN -87.543661
41.646928 2622665.000000 337 NaN NaN -87.613624
41.646929 2522471.000000 311 NaN NaN -87.614480
41.647148 1862080.000000 330 NaN NaN -87.613821
41.647148 919076.000000 344 NaN NaN -87.613361
41.647149 1848028.000000 246 NaN NaN -87.615443
41.647365 1827735.000000 13647 NaN NaN -87.544277
41.647439 2494150.500000 13643 NaN NaN -87.544372
41.647440 1671191.000000 13625 NaN NaN -87.560384
41.647796 2045840.000000 13610 NaN NaN -87.540181
... ... ... ... ... ...
42.022312 2120971.500000 7736 NaN NaN -87.666980
42.022342 2440772.000000 1404 NaN NaN -87.667087
42.022344 2624524.000000 1408 NaN NaN -87.667249
42.022352 2460691.666667 1428 NaN NaN -87.668059
42.022361 2460217.500000 1518 NaN NaN -87.669066
42.022363 2536321.500000 1522 NaN NaN -87.669211
42.022369 2639443.000000 1536 NaN NaN -87.669718
42.022371 1949901.750000 1542 NaN NaN -87.669936
42.022372 1814571.000000 1546 NaN NaN -87.670081
42.022372 2184769.750000 1548 NaN NaN -87.670154
42.022409 2020055.000000 7742 NaN NaN -87.673211
42.022411 1778062.000000 1609 NaN NaN -87.671052
42.022412 2338119.500000 1625 NaN NaN -87.671568
42.022415 1898185.000000 7759 NaN NaN -87.666318
42.022417 2338087.000000 1647 NaN NaN -87.672322
42.022544 2254839.000000 7746 NaN NaN -87.666677
42.022580 2456731.000000 7750 NaN NaN -87.666555
42.022630 2214631.000000 1608 NaN NaN -87.671051
42.022631 2258303.000000 1616 NaN NaN -87.671309
42.022631 1724361.000000 1622 NaN NaN -87.671503
42.022632 2509988.000000 1624 NaN NaN -87.671567
42.022632 2220273.000000 1626 NaN NaN -87.671632
42.022634 2432020.500000 1634 NaN NaN -87.671940
42.022636 1697900.000000 1646 NaN NaN -87.672316
42.022638 2422669.000000 1658 NaN NaN -87.672691
42.022642 2083770.272727 1700 NaN NaN -87.673119
42.022643 1945289.000000 1702 NaN NaN -87.673196
42.022644 2422552.333333 1710 NaN NaN -87.673498
42.022645 2419406.000000 1716 NaN NaN -87.673726
42.022645 1881222.000000 1726 NaN NaN -87.674104

165089 rows × 5 columns


In [53]:
def remove_na(file):
    file= file.dropna(axis={0,1}, how='all')
    file.head()

In [62]:
remove_na(bp_file)
#bp_file.head()

In [60]:
bp_file.interpolate().plot()


Out[60]:
<matplotlib.axes._subplots.AxesSubplot at 0x107af4350>

In [71]:
bp_file= bp_file.dropna(axis=[0,1], how='all')
bp_file.head()


Out[71]:

In [72]:
bp_file= bp_file.dropna(axis=[0,1], how='all')
bp_file.head()


Out[72]:

In [73]:
bp_file = pd.read_csv("/Users/Elissa/dssg/project-inspector-gadget/Building_Permits.csv")

In [78]:
#bp_file= bp_file.dropna(axis=[0,1], thresh=100)
bp_file.head()


Out[78]:

In [79]:
bp_file = pd.read_csv("/Users/Elissa/dssg/project-inspector-gadget/Building_Permits.csv")

In [80]:
bp_file.head()


Out[80]:
ID PERMIT# PERMIT_TYPE ISSUE_DATE ESTIMATED_COST AMOUNT_WAIVED AMOUNT_PAID TOTAL_FEE STREET_NUMBER STREET DIRECTION ... CONTRACTOR_15_TYPE CONTRACTOR_15_NAME CONTRACTOR_15_ADDRESS CONTRACTOR_15_CITY CONTRACTOR_15_STATE CONTRACTOR_15_ZIPCODE CONTRACTOR_15_PHONE LATITUDE LONGITUDE LOCATION
0 911610 EV000008 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 406 N ... NaN NaN NaN NaN NaN NaN NaN 41.889204 -87.654722 (41.88920399822612, -87.65472214051763)
1 911617 EV000015 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 1664 N ... NaN NaN NaN NaN NaN NaN NaN 41.912568 -87.662167 (41.91256808104945, -87.66216724918101)
2 911654 EV000074 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $105.00 $105.00 536 W ... NaN NaN NaN NaN NaN NaN NaN 41.948277 -87.644878 (41.948276832456244, -87.64487812656894)
3 911698 EV000113 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 3255 W ... NaN NaN NaN NaN NaN NaN NaN 41.926405 -87.709663 (41.92640488498051, -87.70966289254984)
4 911713 EV000128 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 4177 S ... NaN NaN NaN NaN NaN NaN NaN 41.817495 -87.698459 (41.817494775576236, -87.69845934497967)

5 rows × 131 columns


In [81]:
bp_file= bp_file.dropna(axis=[0,1], how="all")

In [82]:
bp_file.head()


Out[82]:
ID PERMIT# PERMIT_TYPE ISSUE_DATE ESTIMATED_COST AMOUNT_WAIVED AMOUNT_PAID TOTAL_FEE STREET_NUMBER STREET DIRECTION ... CONTRACTOR_14_PHONE CONTRACTOR_15_TYPE CONTRACTOR_15_NAME CONTRACTOR_15_ADDRESS CONTRACTOR_15_CITY CONTRACTOR_15_STATE CONTRACTOR_15_ZIPCODE LATITUDE LONGITUDE LOCATION
0 911610 EV000008 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 406 N ... NaN NaN NaN NaN NaN NaN NaN 41.889204 -87.654722 (41.88920399822612, -87.65472214051763)
1 911617 EV000015 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 1664 N ... NaN NaN NaN NaN NaN NaN NaN 41.912568 -87.662167 (41.91256808104945, -87.66216724918101)
2 911654 EV000074 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $105.00 $105.00 536 W ... NaN NaN NaN NaN NaN NaN NaN 41.948277 -87.644878 (41.948276832456244, -87.64487812656894)
3 911698 EV000113 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 3255 W ... NaN NaN NaN NaN NaN NaN NaN 41.926405 -87.709663 (41.92640488498051, -87.70966289254984)
4 911713 EV000128 PERMIT - ELEVATOR EQUIPMENT NaN $0.00 $0.00 $52.50 $52.50 4177 S ... NaN NaN NaN NaN NaN NaN NaN 41.817495 -87.698459 (41.817494775576236, -87.69845934497967)

5 rows × 130 columns


In [87]:
bp_file= bp_file.dropna(axis=[0,1], thresh=40)
removeSpace(bp_file)
bp_file.head()


Out[87]:
id permit# permit_type issue_date estimated_cost amount_waived amount_paid total_fee street_number street direction ... contractor_11_phone contractor_12_type contractor_12_name contractor_12_address contractor_12_city contractor_12_state contractor_12_zipcode latitude longitude location
467 1358358 B20414313 PERMIT - NEW CONSTRUCTION 05/18/2006 $2000000.00 $0.00 $18726.95 $18726.95 321 S ... NaN NaN NaN NaN NaN NaN NaN 41.876481 -87.715602 (41.8764808798513, -87.71560203300689)
476 1378485 100002267 PERMIT - RENOVATION/ALTERATION 03/10/2006 $45000.00 $0.00 $1945.00 $1945.00 2421 N ... NaN NaN NaN NaN NaN NaN NaN 41.925857 -87.664452 (41.92585684158289, -87.66445154091303)
480 1381541 100004342 PERMIT - RENOVATION/ALTERATION 09/29/2005 $38000.00 $0.00 $1560.00 $1560.00 2525 W ... NaN NaN NaN NaN NaN NaN NaN 41.910173 -87.690678 (41.91017264385976, -87.69067799640872)
495 1392510 100010675 PERMIT - NEW CONSTRUCTION 09/30/2005 $800000.00 $0.00 $13475.14 $13475.14 693 N ... NaN NaN NaN NaN NaN NaN NaN 41.894941 -87.649976 (41.89494059376751, -87.64997609685338)
500 1393747 100011654 PERMIT - NEW CONSTRUCTION 06/09/2006 $450000.00 $0.00 $8003.98 $8003.98 3637 N ... NaN NaN NaN NaN NaN NaN NaN 41.948342 -87.654216 (41.94834184745331, -87.65421574924672)

5 rows × 109 columns


In [92]:
bp_file.sort_index(axis=1, ascending=False)
bp_file.groupby("permit_type").describe()


Out[92]:
id latitude longitude street_number
permit_type
PERMIT - EASY PERMIT PROCESS count 12398.000000 12362.000000 12362.000000 12398.000000
mean 2239580.565898 41.872826 -87.670125 3435.804243
std 277411.088461 0.081466 0.054998 2869.067300
min 1631654.000000 41.648034 -87.914428 1.000000
25% 2030754.000000 41.805878 -87.702304 1040.000000
50% 2252920.000000 41.891114 -87.661723 2650.000000
75% 2488714.000000 41.931647 -87.631010 5345.000000
max 2660859.000000 42.022645 -87.524793 13601.000000
PERMIT - ELECTRIC WIRING count 171.000000 171.000000 171.000000 171.000000
mean 2344623.017544 41.902194 -87.639942 1234.356725
std 244473.956561 0.038029 0.035431 1572.506387
min 1648495.000000 41.774379 -87.836841 1.000000
25% 2181232.500000 41.884606 -87.640514 221.500000
50% 2388227.000000 41.895585 -87.627700 600.000000
75% 2524884.000000 41.907800 -87.624126 1408.500000
max 2659993.000000 42.019287 -87.586674 6625.000000
PERMIT - ELEVATOR EQUIPMENT count 13.000000 13.000000 13.000000 13.000000
mean 1784027.000000 41.913713 -87.642516 1393.307692
std 153059.804522 0.051593 0.024074 1649.742878
min 1653052.000000 41.838141 -87.701599 30.000000
25% 1694335.000000 41.887469 -87.648656 400.000000
50% 1769358.000000 41.898465 -87.636605 828.000000
75% 1783210.000000 41.941080 -87.626333 1791.000000
max 2248622.000000 42.019287 -87.617560 6030.000000
PERMIT - FOR EXTENSION OF PMT count 20.000000 20.000000 20.000000 20.000000
mean 1840212.850000 41.883573 -87.687679 4378.800000
std 49174.752160 0.088078 0.059219 2550.941531
min 1784330.000000 41.693591 -87.789381 500.000000
25% 1810337.250000 41.816878 -87.755429 2401.250000
50% 1828003.500000 41.888869 -87.684555 4926.500000
... ... ... ... ... ...
PERMIT - RENOVATION/ALTERATION std 301040.574380 0.073391 0.054047 2723.095179
min 1378485.000000 41.644717 -87.914436 1.000000
25% 1893060.500000 41.856858 -87.697580 550.000000
50% 2191642.500000 41.889038 -87.655734 2056.000000
75% 2434379.500000 41.931165 -87.630801 4610.000000
max 2660428.000000 42.022644 -87.525094 13749.000000
PERMIT - SCAFFOLDING count 148.000000 148.000000 148.000000 148.000000
mean 2266617.283784 41.906027 -87.636442 1683.195946
std 170289.800028 0.042928 0.023654 2017.432023
min 1788346.000000 41.763235 -87.790577 1.000000
25% 2180531.750000 41.884642 -87.644034 332.250000
50% 2297329.500000 41.899627 -87.632183 909.500000
75% 2366474.250000 41.921132 -87.626984 1624.000000
max 2640511.000000 42.016879 -87.559617 7423.000000
PERMIT - SIGNS count 417.000000 417.000000 417.000000 417.000000
mean 2149261.302158 41.890323 -87.643081 1276.712230
std 274846.546650 0.039096 0.031956 1795.182396
min 1645683.000000 41.714554 -87.820686 1.000000
25% 1884105.000000 41.881589 -87.650259 135.000000
50% 2134402.000000 41.886373 -87.632167 600.000000
75% 2422446.000000 41.900097 -87.626054 1550.000000
max 2642009.000000 42.019287 -87.575487 9831.000000
PERMIT - WRECKING/DEMOLITION count 7.000000 7.000000 7.000000 7.000000
mean 1822022.000000 41.881582 -87.680151 4230.142857
std 254799.225204 0.083528 0.062387 2644.988811
min 1563936.000000 41.767494 -87.820686 1130.000000
25% 1637477.500000 41.814693 -87.664391 2420.500000
50% 1666787.000000 41.925965 -87.657137 2745.000000
75% 2041025.000000 41.931981 -87.653905 6576.500000
max 2166426.000000 41.984271 -87.646643 7742.000000

88 rows × 4 columns


In [ ]: