In [1]:
import pandas as pd
import pickle
import numpy as np

# Load the bar review dataset 
review = pd.read_pickle('../output/bar_reviews_cleaned_and_tokenized_SF.pickle')
review.head(2)


Out[1]:
business_id date review_id stars text type user_id votes_cool votes_funny votes_useful cleaned_tokenized
10 UsFtqoBl7naz8AVUBZMjQQ 2013-11-08 Di3exaUCFNw1V4kSNW5pgA 5 All the food is great here. But the best thing... review uK8tzraOp4M5u3uYrqIBXg 0.0 0.0 0.0 [[food, great], [best, thing, wing], [wing, si...
11 UsFtqoBl7naz8AVUBZMjQQ 2014-03-29 0Lua2-PbqEQMjD9r89-asw 3 We checked this place out this past Monday for... review I_47G-R2_egp7ME5u_ltew 0.0 0.0 0.0 [[checked, place, past, monday, wing, night], ...

In [2]:
import gensim
from itertools import chain
import sys
sys.path.append('../vectorsearch/')
import nltk_helper
import doc2vec
from gensim.models.doc2vec import TaggedDocument


n_epochs = 10
n_docs = -1 # -1 for almost all of them...

# Collapse each review to a 1D list of words.
review_flatten = [list(chain.from_iterable(doc)) for doc in review.cleaned_tokenized[:n_docs]]

# docs = [TaggedDocument(words, ['SENT_%i'%index,])
#                              for index, words in enumerate(review_flatten)]

docs = [TaggedDocument(words, [review.review_id.iloc[index]])
                             for index, words in enumerate(review_flatten)]


# A list of words for each review  
sentences = [doc.words for doc in docs]

print '\nFirst Doc: \n-----------------\n', docs[0]


path /data/insight_yelp/input/

First Doc: 
-----------------
TaggedDocument(['food', 'great', 'best', 'thing', u'wing', u'wing', 'simply', 'fantastic', 'wet', 'cajun', 'best', 'most', 'popular', 'also', 'like', 'seasoned', 'salt', u'wing', 'wing', 'night', 'monday', 'wednesday', 'night', '075', 'whole', u'wing', 'dining', 'area', 'nice', 'very', 'family', 'friendly', 'bar', 'very', 'nice', 'well', 'place', 'truly', 'yinzers', 'dream', 'pittsburgh', 'dad', 'would', 'love', 'place', 'nat', u'all-the-food', u'the-best-thing', u'their-wings', u'their-wings', u'wing-night', u'the-dining-area', u'the-bar', u'this-place', u'this-place'], [u'Di3exaUCFNw1V4kSNW5pgA'])

In [ ]:
import copy 

model = doc2vec.Doc2Vec(min_count=3, window=6, size=100, sample=1e-4, negative=10, workers=12)
# Build the vocab from list of sentences.
model.build_vocab(docs) 
# Useful for training.  Get shuffled during training.




In [ ]:
from random import shuffle

for epoch in range(10):
    print '\rTraining Epoch %i, alpha %1.4f'%(epoch+1, model.alpha),
    #model.train(np.random.permutation(docs))
    shuffle(docs)
    model.train(docs)
    model.alpha -= 0.001 # decrease the learning rate
    model.min_alpha = model.alpha # fix the learning rate, no decay

model.init_sims(replace=True) 


# # Normalize the word vectors.
# vec_norms = np.sqrt(np.sum(model.syn0**2, axis=1))
# model.syn0 = (model.syn0/vec_norms[:, numpy.newaxis])
# # Normalize the doc vectors.
# vec_norms = np.sqrt(np.sum(model.docvecs.doctag_syn0**2, axis=1))
# model.docvecs.doctag_syn0 = (model.docvecs.doctag_syn0/vec_norms[:, numpy.newaxis])


Training Epoch 1, alpha 0.0250

In [ ]:
model.save('../output/doc2vec_bars.model')

In [101]:
# Can find similar documents..
print model.docvecs.most_similar(positive=docs[0][1]), '\n'

# Can find similar words...
print model.most_similar(positive=['beer']), '\n'

# Can find documents that are most similar to keywords.... 
print model.docvecs.most_similar(positive=[model['beer'], model['music']]), '\n'

# Can find words that are most common in documents
print " ".join(docs[0][0])
print model.most_similar(positive=[model.docvecs[docs[0][1][0]], ]), '\n'


[(u'MNczjKfOZ8VD4Q9YzWNBbQ', 0.8875299692153931), (u'QcAMcIZgS4_gtU18GaWjiA', 0.8867901563644409), (u'DkqhyLlc7nkt7Du0RYfz3w', 0.8855961561203003), (u'yM4tNnuNuiH7MU54Ul128Q', 0.8844144344329834), (u'oyPN_upWhqekHRGIpKwp4g', 0.883427083492279), (u'_TlCk3xdz8RQCBQJAM55ZA', 0.8828277587890625), (u'gHKXQT4xVWohNGkCR6swog', 0.8823326230049133), (u'32dbp8Tkc1DvgTMZuXH7lQ', 0.8809983730316162), (u'JXILRnFAOBauVnDibjGrDA', 0.8803400993347168), (u'vXfyHC4vS6uyL7r2wBk4UA', 0.8800426125526428)] 

[('food', 0.9956748485565186), ('at-least', 0.9953977465629578), ('pittsburgh', 0.9950786828994751), ('not', 0.994979202747345), ('menu', 0.9948906898498535), ('dont', 0.9948253631591797), ('place', 0.9948084354400635), ('very', 0.9947399497032166), ('try', 0.9947223663330078), ('nice', 0.9946841597557068)] 

[(u'MsoASFxCmOOkOBOqZ80ngQ', 0.9963570833206177), (u'hnnT9vXu-m2PZeOKpqX-6Q', 0.9949337244033813), (u'c_OfFAXTywYkhsV4DgTpSw', 0.9945775270462036), (u'pKcQEu1QMRLWRuBBLqFU3A', 0.9941195249557495), (u'7idP8cvvVS7yKab8iTdqyw', 0.9940100908279419), (u'GdGz5w7Dx0CASRxkoktqvw', 0.9939402937889099), (u'uf61rPucuICXhSPXlZ1hIQ', 0.9938896894454956), (u'qnQoXQ5l3GkY_iFx-mO9PA', 0.9938743114471436), (u'39XuVN28H0eMmdvWHXaMTw', 0.9938485026359558), (u'7GAcFg4nSnf0OqeAXRxekw', 0.9937247037887573)] 

food great best thing wing wing simply fantastic wet cajun best most popular also like seasoned salt wing wing-night monday wednesday night 075 whole wing dining area nice very family friendly bar very nice well place truly yinzers dream pittsburgh dad would love place nat
[('website', 0.8903827667236328), ('literally', 0.8869487643241882), (u'wall', 0.8863758444786072), ('worse', 0.8859225511550903), ('toasted', 0.8841910362243652), (u'sport', 0.8837718963623047), ('playing', 0.883684515953064), ('sing', 0.8822931051254272), ('picture', 0.8821819424629211), ('stopping', 0.8820637464523315)] 


In [136]:



set([u'UsFtqoBl7naz8AVUBZMjQQ', u'mVHrayjG3uZ_RLHkLj-AMg'])
[-0.0038604951, -0.00059710076]

In [104]:
# print model.docvecs['KUinHkKyGhznElgIzx0yIw']*2
# print get_mean_doc_vector(['KUinHkKyGhznElgIzx0yIw', 'KUinHkKyGhznElgIzx0yIw'], model)

for rev in review.review_id.iloc[:10]:
    print rev
    print np.dot(model.docvecs[rev], model.docvecs[rev])


Di3exaUCFNw1V4kSNW5pgA
0.0042853
0Lua2-PbqEQMjD9r89-asw
0.0122367
7N9j5YbBHBW6qguE5DAeyA
0.00195272
mjCJR33jvUNt41iJCxDU_g
0.00155523
6w6gMZ3iBLGcUM4RBIuifQ
0.0221827
jVVv_DA5mCDB6mediuwHAw
0.00289149
3Es8GsjkssusYgeU6_ZVpQ
0.0126018
KAkcn7oQP1xX8KsZ-XmktA
0.00472332
BZNJkkP0bXnwQ2-sCqat2Q
0.014506
VDTIbR3G5_IPkpXbo2MutA
0.00847885

In [1]:
for word, sim in model.most_similar('beer'):
    print np.dot(model[word], model[word])



NameErrorTraceback (most recent call last)
<ipython-input-1-3f7c4f3ce9aa> in <module>()
----> 1 for word, sim in model.most_similar('beer'):
      2     print np.dot(model[word], model[word])

NameError: name 'model' is not defined

In [78]:
for key in model.vocab.keys():
    model[key]


Out[78]:
{'fawn': <gensim.models.word2vec.Vocab at 0x7f994aeb0bd0>,
 'raining': <gensim.models.word2vec.Vocab at 0x7f996d984e90>,
 'bypassed': <gensim.models.word2vec.Vocab at 0x7f996d2de450>,
 'cussed': <gensim.models.word2vec.Vocab at 0x7f99be5c1650>,
 'blackend': <gensim.models.word2vec.Vocab at 0x7f99be5c1e50>,
 '5-diamond': <gensim.models.word2vec.Vocab at 0x7f99be5c1290>,
 'yellow': <gensim.models.word2vec.Vocab at 0x7f99be5c1c50>,
 'four': <gensim.models.word2vec.Vocab at 0x7f99be5c12d0>,
 'prefix': <gensim.models.word2vec.Vocab at 0x7f99be5c1150>,
 'deelish': <gensim.models.word2vec.Vocab at 0x7f99656b1d50>,
 'hanging': <gensim.models.word2vec.Vocab at 0x7f99be5c1d90>,
 'bistroid': <gensim.models.word2vec.Vocab at 0x7f99be5c1a50>,
 'woody': <gensim.models.word2vec.Vocab at 0x7f99be5c1c90>,
 'aggression': <gensim.models.word2vec.Vocab at 0x7f99be5c1950>,
 'conjure': <gensim.models.word2vec.Vocab at 0x7f99be5c1dd0>,
 'frou-frou': <gensim.models.word2vec.Vocab at 0x7f99be5c1f10>,
 'crooned': <gensim.models.word2vec.Vocab at 0x7f9965209ad0>,
 'frisee': <gensim.models.word2vec.Vocab at 0x7f996d5f00d0>,
 'fiddling': <gensim.models.word2vec.Vocab at 0x7f996576b590>,
 'eligible': <gensim.models.word2vec.Vocab at 0x7f99be5c1210>,
 'electricity': <gensim.models.word2vec.Vocab at 0x7f99be5c1590>,
 'mid-week': <gensim.models.word2vec.Vocab at 0x7f99be5c1f90>,
 'scold': <gensim.models.word2vec.Vocab at 0x7f99be5c1550>,
 'unanswered': <gensim.models.word2vec.Vocab at 0x7f996d4ca150>,
 'gab': <gensim.models.word2vec.Vocab at 0x7f9965646a10>,
 'originality': <gensim.models.word2vec.Vocab at 0x7f996d4ca310>,
 'opener': <gensim.models.word2vec.Vocab at 0x7f996d125890>,
 'prix-fixe': <gensim.models.word2vec.Vocab at 0x7f996d4ca790>,
 u'crooner': <gensim.models.word2vec.Vocab at 0x7f996d4ca510>,
 'lore': <gensim.models.word2vec.Vocab at 0x7f996d4ca610>,
 'lord': <gensim.models.word2vec.Vocab at 0x7f996d4ca690>,
 'immature': <gensim.models.word2vec.Vocab at 0x7f996d4ca090>,
 'inclement': <gensim.models.word2vec.Vocab at 0x7f996d5a1cd0>,
 'swivel': <gensim.models.word2vec.Vocab at 0x7f996d4ca750>,
 'hormone': <gensim.models.word2vec.Vocab at 0x7f996d4ca290>,
 'shielding': <gensim.models.word2vec.Vocab at 0x7f99653c5950>,
 'hostest': <gensim.models.word2vec.Vocab at 0x7f996d425750>,
 'deli': <gensim.models.word2vec.Vocab at 0x7f996d4ca650>,
 'diehard': <gensim.models.word2vec.Vocab at 0x7f99656d2450>,
 'regional': <gensim.models.word2vec.Vocab at 0x7f996d4ca5d0>,
 'costume': <gensim.models.word2vec.Vocab at 0x7f996d44f390>,
 u'dell': <gensim.models.word2vec.Vocab at 0x7f996d4ca590>,
 'like-say': <gensim.models.word2vec.Vocab at 0x7f996d4ca550>,
 'fattiness': <gensim.models.word2vec.Vocab at 0x7f996d4ca4d0>,
 u'hdtv': <gensim.models.word2vec.Vocab at 0x7f996d4ca450>,
 'tantalizing': <gensim.models.word2vec.Vocab at 0x7f996d4ca410>,
 'leisurely': <gensim.models.word2vec.Vocab at 0x7f996d4ca390>,
 'low-lighting': <gensim.models.word2vec.Vocab at 0x7f996d4ca350>,
 'fur': <gensim.models.word2vec.Vocab at 0x7f99657108d0>,
 'stabbed': <gensim.models.word2vec.Vocab at 0x7f996d4ca250>,
 'roofie': <gensim.models.word2vec.Vocab at 0x7f99656c7390>,
 'bringing': <gensim.models.word2vec.Vocab at 0x7f996d4ca210>,
 'number-1': <gensim.models.word2vec.Vocab at 0x7f996d4ca1d0>,
 'soba': <gensim.models.word2vec.Vocab at 0x7f9965646b90>,
 'tcby': <gensim.models.word2vec.Vocab at 0x7f996d4ca0d0>,
 'disturb': <gensim.models.word2vec.Vocab at 0x7f996d4ca050>,
 'internally': <gensim.models.word2vec.Vocab at 0x7f99be5d6210>,
 u'prize': <gensim.models.word2vec.Vocab at 0x7f99be5d6550>,
 'broiler': <gensim.models.word2vec.Vocab at 0x7f99be5d6410>,
 'obstruction': <gensim.models.word2vec.Vocab at 0x7f99654994d0>,
 'wooden': <gensim.models.word2vec.Vocab at 0x7f99be5d64d0>,
 'clientele': <gensim.models.word2vec.Vocab at 0x7f99be5d6510>,
 'aside-from': <gensim.models.word2vec.Vocab at 0x7f99be5d6050>,
 'voyeur': <gensim.models.word2vec.Vocab at 0x7f99be5d63d0>,
 'wednesday': <gensim.models.word2vec.Vocab at 0x7f99be5d65d0>,
 'piling': <gensim.models.word2vec.Vocab at 0x7f99be5d62d0>,
 'broiled': <gensim.models.word2vec.Vocab at 0x7f99be5d6450>,
 'stars-': <gensim.models.word2vec.Vocab at 0x7f99be5d6390>,
 'crotch': <gensim.models.word2vec.Vocab at 0x7f99be5d6310>,
 'succession': <gensim.models.word2vec.Vocab at 0x7f99be5d6290>,
 'stereotypical': <gensim.models.word2vec.Vocab at 0x7f99be5d6190>,
 'path': <gensim.models.word2vec.Vocab at 0x7f996587b550>,
 'merengue': <gensim.models.word2vec.Vocab at 0x7f996d300fd0>,
 u'fritter': <gensim.models.word2vec.Vocab at 0x7f99649b3950>,
 'wellmy': <gensim.models.word2vec.Vocab at 0x7f99657cae90>,
 'glassy': <gensim.models.word2vec.Vocab at 0x7f99be5d61d0>,
 'whether-or-not': <gensim.models.word2vec.Vocab at 0x7f996d9365d0>,
 'nigh': <gensim.models.word2vec.Vocab at 0x7f996d9369d0>,
 'tired': <gensim.models.word2vec.Vocab at 0x7f996d936b10>,
 'miller': <gensim.models.word2vec.Vocab at 0x7f996d936490>,
 'cordially': <gensim.models.word2vec.Vocab at 0x7f996d9364d0>,
 'preface': <gensim.models.word2vec.Vocab at 0x7f996d936790>,
 'bacon': <gensim.models.word2vec.Vocab at 0x7f996d936450>,
 'pulse': <gensim.models.word2vec.Vocab at 0x7f996d936c10>,
 'elegant': <gensim.models.word2vec.Vocab at 0x7f9965206210>,
 'second': <gensim.models.word2vec.Vocab at 0x7f996d9367d0>,
 'crisply': <gensim.models.word2vec.Vocab at 0x7f996d936410>,
 '275': <gensim.models.word2vec.Vocab at 0x7f996d936d10>,
 'perfectnot': <gensim.models.word2vec.Vocab at 0x7f996d125f10>,
 'sailed': <gensim.models.word2vec.Vocab at 0x7f996d9368d0>,
 'scraped': <gensim.models.word2vec.Vocab at 0x7f996d936290>,
 'snuggled': <gensim.models.word2vec.Vocab at 0x7f996d936fd0>,
 'theory': <gensim.models.word2vec.Vocab at 0x7f99657cafd0>,
 'blouse': <gensim.models.word2vec.Vocab at 0x7f996d936b50>,
 'hilariously': <gensim.models.word2vec.Vocab at 0x7f996d2feb90>,
 'vegetarianvegan': <gensim.models.word2vec.Vocab at 0x7f996d936a50>,
 'thunder': <gensim.models.word2vec.Vocab at 0x7f996d936c90>,
 'cooking': <gensim.models.word2vec.Vocab at 0x7f996d936f50>,
 'pittsburghers': <gensim.models.word2vec.Vocab at 0x7f996d936e50>,
 'roadhouse': <gensim.models.word2vec.Vocab at 0x7f996d936d90>,
 'up-side': <gensim.models.word2vec.Vocab at 0x7f996d936d50>,
 'negated': <gensim.models.word2vec.Vocab at 0x7f996d936bd0>,
 'marching': <gensim.models.word2vec.Vocab at 0x7f996d936b90>,
 u'groupie': <gensim.models.word2vec.Vocab at 0x7f996d936a90>,
 'rent-out': <gensim.models.word2vec.Vocab at 0x7f996575a150>,
 'pressed': <gensim.models.word2vec.Vocab at 0x7f996d936a10>,
 'attention-to-detail': <gensim.models.word2vec.Vocab at 0x7f996d936950>,
 u'crouch': <gensim.models.word2vec.Vocab at 0x7f996d936910>,
 'incomprehensible': <gensim.models.word2vec.Vocab at 0x7f996585a0d0>,
 'shocked': <gensim.models.word2vec.Vocab at 0x7f996d621b90>,
 'donalds': <gensim.models.word2vec.Vocab at 0x7f996d936810>,
 u'herb': <gensim.models.word2vec.Vocab at 0x7f99658218d0>,
 'depend-on': <gensim.models.word2vec.Vocab at 0x7f9965662dd0>,
 'interrupting': <gensim.models.word2vec.Vocab at 0x7f996d936710>,
 'jasmine': <gensim.models.word2vec.Vocab at 0x7f996d9366d0>,
 'swag': <gensim.models.word2vec.Vocab at 0x7f996d5fce10>,
 u'here': <gensim.models.word2vec.Vocab at 0x7f996d936650>,
 u'herd': <gensim.models.word2vec.Vocab at 0x7f996d936610>,
 'reported': <gensim.models.word2vec.Vocab at 0x7f996d936590>,
 'ching': <gensim.models.word2vec.Vocab at 0x7f996d936550>,
 'tobin': <gensim.models.word2vec.Vocab at 0x7f99658a9dd0>,
 'china': <gensim.models.word2vec.Vocab at 0x7f996d936250>,
 'hulk': <gensim.models.word2vec.Vocab at 0x7f99657cf190>,
 'dorm': <gensim.models.word2vec.Vocab at 0x7f996d936210>,
 'affiliated': <gensim.models.word2vec.Vocab at 0x7f996d936190>,
 'doro': <gensim.models.word2vec.Vocab at 0x7f996d9360d0>,
 'tatum': <gensim.models.word2vec.Vocab at 0x7f996d936090>,
 'dominic': <gensim.models.word2vec.Vocab at 0x7f996d936350>,
 'dork': <gensim.models.word2vec.Vocab at 0x7f996d936ad0>,
 u'buddy': <gensim.models.word2vec.Vocab at 0x7f9965499810>,
 'natured': <gensim.models.word2vec.Vocab at 0x7f996d936310>,
 'gobut': <gensim.models.word2vec.Vocab at 0x7f996d4254d0>,
 'substance': <gensim.models.word2vec.Vocab at 0x7f996d6a99d0>,
 'uplifting': <gensim.models.word2vec.Vocab at 0x7f996d6a9910>,
 'sloshed': <gensim.models.word2vec.Vocab at 0x7f99657cf1d0>,
 'lychee': <gensim.models.word2vec.Vocab at 0x7f9965214d50>,
 'elaborate': <gensim.models.word2vec.Vocab at 0x7f996d6a9f50>,
 'climbed': <gensim.models.word2vec.Vocab at 0x7f996d6a9dd0>,
 'oasis': <gensim.models.word2vec.Vocab at 0x7f99657cf210>,
 'oxymoron': <gensim.models.word2vec.Vocab at 0x7f996d6a9650>,
 'snowing': <gensim.models.word2vec.Vocab at 0x7f996d6a9c10>,
 'kidd': <gensim.models.word2vec.Vocab at 0x7f996d6a9790>,
 'transfixed': <gensim.models.word2vec.Vocab at 0x7f996d6a9490>,
 'dimness': <gensim.models.word2vec.Vocab at 0x7f996d6a9550>,
 'military': <gensim.models.word2vec.Vocab at 0x7f996d6a9610>,
 'pullin': <gensim.models.word2vec.Vocab at 0x7f996d6a9290>,
 'spotty': <gensim.models.word2vec.Vocab at 0x7f996d6a94d0>,
 'delicacy': <gensim.models.word2vec.Vocab at 0x7f9965886cd0>,
 'cancellation': <gensim.models.word2vec.Vocab at 0x7f996d6a9ad0>,
 u'mainstay': <gensim.models.word2vec.Vocab at 0x7f99657487d0>,
 u'patrick': <gensim.models.word2vec.Vocab at 0x7f9965781910>,
 'criticism': <gensim.models.word2vec.Vocab at 0x7f996d6a9cd0>,
 'appropriately': <gensim.models.word2vec.Vocab at 0x7f996d6a9c90>,
 u'roadrunner': <gensim.models.word2vec.Vocab at 0x7f996d6a9fd0>,
 'attracted': <gensim.models.word2vec.Vocab at 0x7f99657cac10>,
 'projection': <gensim.models.word2vec.Vocab at 0x7f996d6a9f90>,
 'magically': <gensim.models.word2vec.Vocab at 0x7f996d6a9e90>,
 'owed': <gensim.models.word2vec.Vocab at 0x7f996d6a9e50>,
 'remodeled': <gensim.models.word2vec.Vocab at 0x7f9965499950>,
 'explained': <gensim.models.word2vec.Vocab at 0x7f996d6a9d90>,
 '45': <gensim.models.word2vec.Vocab at 0x7f996586a610>,
 'replace': <gensim.models.word2vec.Vocab at 0x7f996d6a9d50>,
 'brought': <gensim.models.word2vec.Vocab at 0x7f996d6a9d10>,
 'carb': <gensim.models.word2vec.Vocab at 0x7f996d125c10>,
 'remnant': <gensim.models.word2vec.Vocab at 0x7f996d6a9bd0>,
 'to-boot': <gensim.models.word2vec.Vocab at 0x7f996d2fedd0>,
 'quadruple': <gensim.models.word2vec.Vocab at 0x7f996d6a9b10>,
 'stern': <gensim.models.word2vec.Vocab at 0x7f996d6a9a90>,
 'scoffed': <gensim.models.word2vec.Vocab at 0x7f996d6a9a50>,
 'cocaine': <gensim.models.word2vec.Vocab at 0x7f996d75fe50>,
 '050': <gensim.models.word2vec.Vocab at 0x7f996d75ff50>,
 'unit': <gensim.models.word2vec.Vocab at 0x7f996d6a9890>,
 'hoping': <gensim.models.word2vec.Vocab at 0x7f996d6a9850>,
 'sexual': <gensim.models.word2vec.Vocab at 0x7f996d436b10>,
 'cheating': <gensim.models.word2vec.Vocab at 0x7f996d6a97d0>,
 'spoke': <gensim.models.word2vec.Vocab at 0x7f996d6a9750>,
 'dnc': <gensim.models.word2vec.Vocab at 0x7f996d6a9710>,
 'geisha': <gensim.models.word2vec.Vocab at 0x7f996d6a96d0>,
 'browse': <gensim.models.word2vec.Vocab at 0x7f996d6a9690>,
 'insecurity': <gensim.models.word2vec.Vocab at 0x7f996d6a95d0>,
 'spinachartichoke': <gensim.models.word2vec.Vocab at 0x7f996d6a9590>,
 'two-stepping': <gensim.models.word2vec.Vocab at 0x7f996d6a9450>,
 'occupying': <gensim.models.word2vec.Vocab at 0x7f996d6a93d0>,
 'benedum': <gensim.models.word2vec.Vocab at 0x7f996d6a9390>,
 'symphony': <gensim.models.word2vec.Vocab at 0x7f996d6a9310>,
 'music': <gensim.models.word2vec.Vocab at 0x7f996d6a92d0>,
 'therefore': <gensim.models.word2vec.Vocab at 0x7f996d6a9250>,
 'passport': <gensim.models.word2vec.Vocab at 0x7f996d6a9210>,
 'strike': <gensim.models.word2vec.Vocab at 0x7f996d6a90d0>,
 'calculator': <gensim.models.word2vec.Vocab at 0x7f996d20b7d0>,
 'boobage': <gensim.models.word2vec.Vocab at 0x7f99658e85d0>,
 'nite': <gensim.models.word2vec.Vocab at 0x7f9965816390>,
 'playboy': <gensim.models.word2vec.Vocab at 0x7f99658e8bd0>,
 '849': <gensim.models.word2vec.Vocab at 0x7f996d4541d0>,
 'holy': <gensim.models.word2vec.Vocab at 0x7f99658e8450>,
 'relax': <gensim.models.word2vec.Vocab at 0x7f99658e89d0>,
 'detracts': <gensim.models.word2vec.Vocab at 0x7f99658e8b10>,
 'brings': <gensim.models.word2vec.Vocab at 0x7f99658e8c50>,
 'filbertos': <gensim.models.word2vec.Vocab at 0x7f99658e8a10>,
 'whirling': <gensim.models.word2vec.Vocab at 0x7f996d757c50>,
 'scuzzy': <gensim.models.word2vec.Vocab at 0x7f99658e8710>,
 'hurt': <gensim.models.word2vec.Vocab at 0x7f99658e8f50>,
 '99': <gensim.models.word2vec.Vocab at 0x7f99658e8e50>,
 u'glass': <gensim.models.word2vec.Vocab at 0x7f99658e8990>,
 'tying': <gensim.models.word2vec.Vocab at 0x7f99658e8fd0>,
 '91': <gensim.models.word2vec.Vocab at 0x7f99658e8ed0>,
 '90': <gensim.models.word2vec.Vocab at 0x7f99658e8e90>,
 '93': <gensim.models.word2vec.Vocab at 0x7f996d760810>,
 u'hold': <gensim.models.word2vec.Vocab at 0x7f99658e8dd0>,
 '95': <gensim.models.word2vec.Vocab at 0x7f99658e8d90>,
 '97': <gensim.models.word2vec.Vocab at 0x7f99658e8d50>,
 '96': <gensim.models.word2vec.Vocab at 0x7f99658e8cd0>,
 'tastefully': <gensim.models.word2vec.Vocab at 0x7f99658e8c90>,
 'intake': <gensim.models.word2vec.Vocab at 0x7f99658e8c10>,
 'locked': <gensim.models.word2vec.Vocab at 0x7f99658e8b90>,
 u'40': <gensim.models.word2vec.Vocab at 0x7f996586a6d0>,
 'pursue': <gensim.models.word2vec.Vocab at 0x7f99658e8a90>,
 'sway': <gensim.models.word2vec.Vocab at 0x7f9965499cd0>,
 'famed': <gensim.models.word2vec.Vocab at 0x7f99658e8b50>,
 '920pm': <gensim.models.word2vec.Vocab at 0x7f99658e8ad0>,
 'straddle': <gensim.models.word2vec.Vocab at 0x7f99658e8850>,
 'cajoled': <gensim.models.word2vec.Vocab at 0x7f99653f8a10>,
 'grimey': <gensim.models.word2vec.Vocab at 0x7f99658e8290>,
 'sweeter': <gensim.models.word2vec.Vocab at 0x7f99658e8390>,
 'leaped': <gensim.models.word2vec.Vocab at 0x7f9965271450>,
 'budweisers': <gensim.models.word2vec.Vocab at 0x7f99658e8610>,
 'tremont': <gensim.models.word2vec.Vocab at 0x7f99658e83d0>,
 u'example': <gensim.models.word2vec.Vocab at 0x7f99658e86d0>,
 'showthe': <gensim.models.word2vec.Vocab at 0x7f99658e8590>,
 'meat-eating': <gensim.models.word2vec.Vocab at 0x7f99658e8490>,
 u'foodie': <gensim.models.word2vec.Vocab at 0x7f99658e8090>,
 'wand': <gensim.models.word2vec.Vocab at 0x7f99658e8f10>,
 'unjust': <gensim.models.word2vec.Vocab at 0x7f99658e8550>,
 'household': <gensim.models.word2vec.Vocab at 0x7f99653c5d90>,
 'be-all': <gensim.models.word2vec.Vocab at 0x7f99653c51d0>,
 'organized': <gensim.models.word2vec.Vocab at 0x7f99653c5150>,
 u'digit': <gensim.models.word2vec.Vocab at 0x7f99653c5110>,
 'montelucia': <gensim.models.word2vec.Vocab at 0x7f996d15bed0>,
 'sopresatta': <gensim.models.word2vec.Vocab at 0x7f99653c5050>,
 'facade': <gensim.models.word2vec.Vocab at 0x7f996d606410>,
 'retaurant': <gensim.models.word2vec.Vocab at 0x7f99653c5210>,
 'callin': <gensim.models.word2vec.Vocab at 0x7f99653c5290>,
 'caution': <gensim.models.word2vec.Vocab at 0x7f99653c5090>,
 'reviewing': <gensim.models.word2vec.Vocab at 0x7f99653c5190>,
 'want': <gensim.models.word2vec.Vocab at 0x7f99653c5890>,
 'pinto': <gensim.models.word2vec.Vocab at 0x7f99653c5990>,
 'gargantuan': <gensim.models.word2vec.Vocab at 0x7f99653c5e10>,
 'absolute': <gensim.models.word2vec.Vocab at 0x7f996d76ed90>,
 'preferably': <gensim.models.word2vec.Vocab at 0x7f99653c5550>,
 'hog': <gensim.models.word2vec.Vocab at 0x7f99653c58d0>,
 'around-': <gensim.models.word2vec.Vocab at 0x7f99658b0410>,
 'reenact': <gensim.models.word2vec.Vocab at 0x7f996d445b10>,
 'connoisseur': <gensim.models.word2vec.Vocab at 0x7f996587b650>,
 'complaining': <gensim.models.word2vec.Vocab at 0x7f99653c5fd0>,
 'hoo': <gensim.models.word2vec.Vocab at 0x7f99653c5850>,
 'travel': <gensim.models.word2vec.Vocab at 0x7f99653c5ed0>,
 'drying': <gensim.models.word2vec.Vocab at 0x7f99fc653310>,
 'feature': <gensim.models.word2vec.Vocab at 0x7f99fc653210>,
 'hoh': <gensim.models.word2vec.Vocab at 0x7f996d3ab790>,
 'revisit': <gensim.models.word2vec.Vocab at 0x7f996d3abc90>,
 'machine': <gensim.models.word2vec.Vocab at 0x7f996d3ab850>,
 'propane': <gensim.models.word2vec.Vocab at 0x7f996d3abdd0>,
 'hot': <gensim.models.word2vec.Vocab at 0x7f996d3ab910>,
 'fantastisch': <gensim.models.word2vec.Vocab at 0x7f996d3aba10>,
 u'hop': <gensim.models.word2vec.Vocab at 0x7f996d3ab650>,
 'hopping': <gensim.models.word2vec.Vocab at 0x7f9965821050>,
 u'cheetah': <gensim.models.word2vec.Vocab at 0x7f996d761750>,
 'shrug': <gensim.models.word2vec.Vocab at 0x7f996585aa90>,
 'preferable': <gensim.models.word2vec.Vocab at 0x7f996d3abb90>,
 '8pm-close': <gensim.models.word2vec.Vocab at 0x7f99656a6f10>,
 'ask-for': <gensim.models.word2vec.Vocab at 0x7f996d3abc50>,
 'every-one': <gensim.models.word2vec.Vocab at 0x7f996d3abc10>,
 'bar-like': <gensim.models.word2vec.Vocab at 0x7f996d3ab5d0>,
 '1175': <gensim.models.word2vec.Vocab at 0x7f996d3abfd0>,
 'club-sandwich': <gensim.models.word2vec.Vocab at 0x7f996d3abf10>,
 'cabbie': <gensim.models.word2vec.Vocab at 0x7f996d3aba90>,
 u'beauty': <gensim.models.word2vec.Vocab at 0x7f996d3abf90>,
 'funny': <gensim.models.word2vec.Vocab at 0x7f996d3abed0>,
 'spaten': <gensim.models.word2vec.Vocab at 0x7f996d3ab510>,
 'coffeeshop': <gensim.models.word2vec.Vocab at 0x7f996d3abb10>,
 'barrestaurants': <gensim.models.word2vec.Vocab at 0x7f996d3aba50>,
 u'housemate': <gensim.models.word2vec.Vocab at 0x7f996d3abe90>,
 'scottsdale': <gensim.models.word2vec.Vocab at 0x7f996d3ab9d0>,
 'eggrolls': <gensim.models.word2vec.Vocab at 0x7f99652712d0>,
 'possum': <gensim.models.word2vec.Vocab at 0x7f9965271610>,
 'wrong': <gensim.models.word2vec.Vocab at 0x7f9965271150>,
 'destined': <gensim.models.word2vec.Vocab at 0x7f99652711d0>,
 'charleston': <gensim.models.word2vec.Vocab at 0x7f99657cf790>,
 'uofi': <gensim.models.word2vec.Vocab at 0x7f9965271090>,
 'steadfast': <gensim.models.word2vec.Vocab at 0x7f996d65d590>,
 'armed': <gensim.models.word2vec.Vocab at 0x7f9965652550>,
 u'prof': <gensim.models.word2vec.Vocab at 0x7f99656fa390>,
 'shorted': <gensim.models.word2vec.Vocab at 0x7f9965271050>,
 'effective': <gensim.models.word2vec.Vocab at 0x7f9965271310>,
 'attracts': <gensim.models.word2vec.Vocab at 0x7f9965271190>,
 'zesty': <gensim.models.word2vec.Vocab at 0x7f9965875f90>,
 'dels': <gensim.models.word2vec.Vocab at 0x7f9965271510>,
 'fictional': <gensim.models.word2vec.Vocab at 0x7f9965271650>,
 'discontinued': <gensim.models.word2vec.Vocab at 0x7f99653e2790>,
 'luring': <gensim.models.word2vec.Vocab at 0x7f99658f59d0>,
 '18th': <gensim.models.word2vec.Vocab at 0x7f9965271410>,
 u'wino': <gensim.models.word2vec.Vocab at 0x7f99652715d0>,
 'couldt': <gensim.models.word2vec.Vocab at 0x7f99657caa10>,
 'nonsensical': <gensim.models.word2vec.Vocab at 0x7f99652717d0>,
 u'wing': <gensim.models.word2vec.Vocab at 0x7f9965271810>,
 'wind': <gensim.models.word2vec.Vocab at 0x7f9965271850>,
 'wine': <gensim.models.word2vec.Vocab at 0x7f9965271890>,
 u'restriction': <gensim.models.word2vec.Vocab at 0x7f99652718d0>,
 'non-smoker': <gensim.models.word2vec.Vocab at 0x7f996d606750>,
 'forbut': <gensim.models.word2vec.Vocab at 0x7f9965271910>,
 'feedback': <gensim.models.word2vec.Vocab at 0x7f9965271950>,
 'sanchez': <gensim.models.word2vec.Vocab at 0x7f99657cf8d0>,
 'welcomed': <gensim.models.word2vec.Vocab at 0x7f99652719d0>,
 'dreamed': <gensim.models.word2vec.Vocab at 0x7f9965271a10>,
 'vary': <gensim.models.word2vec.Vocab at 0x7f996d4bf9d0>,
 'visualite': <gensim.models.word2vec.Vocab at 0x7f9965271a90>,
 'kickoff': <gensim.models.word2vec.Vocab at 0x7f9965271ad0>,
 'partnered': <gensim.models.word2vec.Vocab at 0x7f9965271b10>,
 '2-star': <gensim.models.word2vec.Vocab at 0x7f9965271b50>,
 'earthiness': <gensim.models.word2vec.Vocab at 0x7f9965271b90>,
 u'foodstuff': <gensim.models.word2vec.Vocab at 0x7f9965271bd0>,
 '1-10': <gensim.models.word2vec.Vocab at 0x7f9965271c50>,
 'two-level': <gensim.models.word2vec.Vocab at 0x7f9965271c90>,
 'rewarded': <gensim.models.word2vec.Vocab at 0x7f9965271cd0>,
 'wrought': <gensim.models.word2vec.Vocab at 0x7f9965271d50>,
 'toothy': <gensim.models.word2vec.Vocab at 0x7f9965631bd0>,
 'matures': <gensim.models.word2vec.Vocab at 0x7f9965271d90>,
 'fit': <gensim.models.word2vec.Vocab at 0x7f9965271e10>,
 'directional': <gensim.models.word2vec.Vocab at 0x7f9965271e50>,
 'fiz': <gensim.models.word2vec.Vocab at 0x7f9965271e90>,
 'screaming': <gensim.models.word2vec.Vocab at 0x7f9965271ed0>,
 'fix': <gensim.models.word2vec.Vocab at 0x7f9965271f10>,
 'striking': <gensim.models.word2vec.Vocab at 0x7f996d125210>,
 'ready-made': <gensim.models.word2vec.Vocab at 0x7f9965271f90>,
 'fanciest': <gensim.models.word2vec.Vocab at 0x7f9965203050>,
 'sip': <gensim.models.word2vec.Vocab at 0x7f99656a0ad0>,
 'fig': <gensim.models.word2vec.Vocab at 0x7f9965203090>,
 'dizzys': <gensim.models.word2vec.Vocab at 0x7f996d75fad0>,
 'un-pretentious': <gensim.models.word2vec.Vocab at 0x7f9965203110>,
 'hidden': <gensim.models.word2vec.Vocab at 0x7f9965203150>,
 'fin': <gensim.models.word2vec.Vocab at 0x7f9965203190>,
 'easier': <gensim.models.word2vec.Vocab at 0x7f99652031d0>,
 'reschedule': <gensim.models.word2vec.Vocab at 0x7f9965203210>,
 'copying': <gensim.models.word2vec.Vocab at 0x7f996d606950>,
 'outand': <gensim.models.word2vec.Vocab at 0x7f9965657310>,
 'songwriter': <gensim.models.word2vec.Vocab at 0x7f9965203290>,
 'slate': <gensim.models.word2vec.Vocab at 0x7f99652032d0>,
 'zoning': <gensim.models.word2vec.Vocab at 0x7f9965203350>,
 'top-quality': <gensim.models.word2vec.Vocab at 0x7f9965203390>,
 u'orbison': <gensim.models.word2vec.Vocab at 0x7f99652033d0>,
 'commemorate': <gensim.models.word2vec.Vocab at 0x7f996d75f7d0>,
 'non-spicy': <gensim.models.word2vec.Vocab at 0x7f9965203450>,
 'game-watching': <gensim.models.word2vec.Vocab at 0x7f99657ae350>,
 'd-bags': <gensim.models.word2vec.Vocab at 0x7f99652034d0>,
 'velcro': <gensim.models.word2vec.Vocab at 0x7f9965203510>,
 u'interrupt': <gensim.models.word2vec.Vocab at 0x7f9965203550>,
 'braised': <gensim.models.word2vec.Vocab at 0x7f9965203590>,
 'township': <gensim.models.word2vec.Vocab at 0x7f99652035d0>,
 'sixteen': <gensim.models.word2vec.Vocab at 0x7f996d328610>,
 'silver': <gensim.models.word2vec.Vocab at 0x7f9965203650>,
 'saddened': <gensim.models.word2vec.Vocab at 0x7f9965203690>,
 'duvel': <gensim.models.word2vec.Vocab at 0x7f99652036d0>,
 'represents': <gensim.models.word2vec.Vocab at 0x7f9965203710>,
 'fetching': <gensim.models.word2vec.Vocab at 0x7f9965271490>,
 'haphazardly': <gensim.models.word2vec.Vocab at 0x7f9965203790>,
 'barwe': <gensim.models.word2vec.Vocab at 0x7f99652037d0>,
 'girls--': <gensim.models.word2vec.Vocab at 0x7f9965203810>,
 'great-deal-of': <gensim.models.word2vec.Vocab at 0x7f9965203850>,
 'hand-dipped': <gensim.models.word2vec.Vocab at 0x7f9965203890>,
 'emulsion': <gensim.models.word2vec.Vocab at 0x7f9965753bd0>,
 'customizable': <gensim.models.word2vec.Vocab at 0x7f9965203910>,
 'noticable': <gensim.models.word2vec.Vocab at 0x7f9965203950>,
 'spotless': <gensim.models.word2vec.Vocab at 0x7f9965203990>,
 u'arrow': <gensim.models.word2vec.Vocab at 0x7f99652039d0>,
 'addicted': <gensim.models.word2vec.Vocab at 0x7f9965203a10>,
 'volcano': <gensim.models.word2vec.Vocab at 0x7f9965203a50>,
 'dumpy': <gensim.models.word2vec.Vocab at 0x7f9965203a90>,
 'torte': <gensim.models.word2vec.Vocab at 0x7f996d606ad0>,
 'jay-z': <gensim.models.word2vec.Vocab at 0x7f9965203b10>,
 'mega-club': <gensim.models.word2vec.Vocab at 0x7f9965586a10>,
 'burial': <gensim.models.word2vec.Vocab at 0x7f9965203b50>,
 'mayonnaise-y': <gensim.models.word2vec.Vocab at 0x7f9965203b90>,
 'whim': <gensim.models.word2vec.Vocab at 0x7f9965203bd0>,
 'rink': <gensim.models.word2vec.Vocab at 0x7f996d142b10>,
 'spidey': <gensim.models.word2vec.Vocab at 0x7f9965203c50>,
 'concord': <gensim.models.word2vec.Vocab at 0x7f9965203c90>,
 'knockout': <gensim.models.word2vec.Vocab at 0x7f9965203cd0>,
 'series': <gensim.models.word2vec.Vocab at 0x7f9965203d10>,
 'allah': <gensim.models.word2vec.Vocab at 0x7f99653c2710>,
 'spider': <gensim.models.word2vec.Vocab at 0x7f9965203d90>,
 'a-least': <gensim.models.word2vec.Vocab at 0x7f9965203dd0>,
 'snaked': <gensim.models.word2vec.Vocab at 0x7f9965203e10>,
 'turnip': <gensim.models.word2vec.Vocab at 0x7f9965203e50>,
 '395': <gensim.models.word2vec.Vocab at 0x7f9965910dd0>,
 'impossible': <gensim.models.word2vec.Vocab at 0x7f996d142cd0>,
 'substantially': <gensim.models.word2vec.Vocab at 0x7f9965203f10>,
 'waddled': <gensim.models.word2vec.Vocab at 0x7f9965203f50>,
 '399': <gensim.models.word2vec.Vocab at 0x7f9965203f90>,
 u'ring': <gensim.models.word2vec.Vocab at 0x7f996d142990>,
 u'whip': <gensim.models.word2vec.Vocab at 0x7f9965204050>,
 'ice-cold': <gensim.models.word2vec.Vocab at 0x7f9965204090>,
 'oooo': <gensim.models.word2vec.Vocab at 0x7f99652040d0>,
 'misfortune': <gensim.models.word2vec.Vocab at 0x7f9965204110>,
 'trending': <gensim.models.word2vec.Vocab at 0x7f9965204150>,
 'a-lot': <gensim.models.word2vec.Vocab at 0x7f996d606b50>,
 'rr': <gensim.models.word2vec.Vocab at 0x7f9965204210>,
 'afraid': <gensim.models.word2vec.Vocab at 0x7f99656bcc50>,
 'smirk': <gensim.models.word2vec.Vocab at 0x7f9965204290>,
 'gooooooood': <gensim.models.word2vec.Vocab at 0x7f99653c2dd0>,
 'urbana': <gensim.models.word2vec.Vocab at 0x7f9965204310>,
 'persisted': <gensim.models.word2vec.Vocab at 0x7f9965204350>,
 'mason': <gensim.models.word2vec.Vocab at 0x7f99652043d0>,
 'rd': <gensim.models.word2vec.Vocab at 0x7f9965204410>,
 'encourage': <gensim.models.word2vec.Vocab at 0x7f9965204450>,
 'nic': <gensim.models.word2vec.Vocab at 0x7f99658163d0>,
 'ra': <gensim.models.word2vec.Vocab at 0x7f99652044d0>,
 'rb': <gensim.models.word2vec.Vocab at 0x7f9965204510>,
 'smh': <gensim.models.word2vec.Vocab at 0x7f9965204550>,
 'rl': <gensim.models.word2vec.Vocab at 0x7f9965204590>,
 'dinginess': <gensim.models.word2vec.Vocab at 0x7f99652045d0>,
 'rn': <gensim.models.word2vec.Vocab at 0x7f99657f4490>,
 'size': <gensim.models.word2vec.Vocab at 0x7f996d142050>,
 'ofcourse': <gensim.models.word2vec.Vocab at 0x7f9965204690>,
 'wanna-be': <gensim.models.word2vec.Vocab at 0x7f99652046d0>,
 'wonderbread': <gensim.models.word2vec.Vocab at 0x7f9965204710>,
 u'foundation': <gensim.models.word2vec.Vocab at 0x7f99657f4b90>,
 u'cigar': <gensim.models.word2vec.Vocab at 0x7f99652047d0>,
 'assured': <gensim.models.word2vec.Vocab at 0x7f9965204810>,
 'credit': <gensim.models.word2vec.Vocab at 0x7f9965570b10>,
 'waddle': <gensim.models.word2vec.Vocab at 0x7f9965204890>,
 'threatened': <gensim.models.word2vec.Vocab at 0x7f99652048d0>,
 'saisons': <gensim.models.word2vec.Vocab at 0x7f9965204910>,
 'rocker': <gensim.models.word2vec.Vocab at 0x7f9965662150>,
 'managerial': <gensim.models.word2vec.Vocab at 0x7f9965204950>,
 'sensory': <gensim.models.word2vec.Vocab at 0x7f9965204990>,
 'kayla': <gensim.models.word2vec.Vocab at 0x7f99652049d0>,
 'necessarily': <gensim.models.word2vec.Vocab at 0x7f99657cff50>,
 'deduct': <gensim.models.word2vec.Vocab at 0x7f9965781c50>,
 'super-fresh': <gensim.models.word2vec.Vocab at 0x7f9965204ad0>,
 'checked': <gensim.models.word2vec.Vocab at 0x7f996d142250>,
 'stacy': <gensim.models.word2vec.Vocab at 0x7f9965204b50>,
 'universally': <gensim.models.word2vec.Vocab at 0x7f9965204b90>,
 'chlorine': <gensim.models.word2vec.Vocab at 0x7f9965204bd0>,
 'in-itself': <gensim.models.word2vec.Vocab at 0x7f996571cfd0>,
 'enormous': <gensim.models.word2vec.Vocab at 0x7f9965204c90>,
 'ate': <gensim.models.word2vec.Vocab at 0x7f9965204cd0>,
 'jot': <gensim.models.word2vec.Vocab at 0x7f99656ccd50>,
 'exposing': <gensim.models.word2vec.Vocab at 0x7f9965204d10>,
 '83rd': <gensim.models.word2vec.Vocab at 0x7f99658376d0>,
 'sickeningly': <gensim.models.word2vec.Vocab at 0x7f9965204d50>,
 'atm': <gensim.models.word2vec.Vocab at 0x7f9965204d90>,
 'run-on': <gensim.models.word2vec.Vocab at 0x7f996d36b5d0>,
 'silicon': <gensim.models.word2vec.Vocab at 0x7f9965204e50>,
 'shipped': <gensim.models.word2vec.Vocab at 0x7f9965204e90>,
 'family-friendly': <gensim.models.word2vec.Vocab at 0x7f9965204ed0>,
 'speedy': <gensim.models.word2vec.Vocab at 0x7f9965204f10>,
 'first-come': <gensim.models.word2vec.Vocab at 0x7f9965204f50>,
 'tempting': <gensim.models.word2vec.Vocab at 0x7f9965204f90>,
 '1970s': <gensim.models.word2vec.Vocab at 0x7f9965204fd0>,
 'reserving': <gensim.models.word2vec.Vocab at 0x7f9965205050>,
 'go-on': <gensim.models.word2vec.Vocab at 0x7f9965205090>,
 'wobbling': <gensim.models.word2vec.Vocab at 0x7f99652050d0>,
 'whirlwind': <gensim.models.word2vec.Vocab at 0x7f99657fc150>,
 'rabid': <gensim.models.word2vec.Vocab at 0x7f9965400c90>,
 'breed': <gensim.models.word2vec.Vocab at 0x7f996d142e50>,
 u'shopper': <gensim.models.word2vec.Vocab at 0x7f9965205290>,
 'elmo': <gensim.models.word2vec.Vocab at 0x7f99652052d0>,
 'wasp': <gensim.models.word2vec.Vocab at 0x7f9965205310>,
 'playfully': <gensim.models.word2vec.Vocab at 0x7f99649d4650>,
 'veggie': <gensim.models.word2vec.Vocab at 0x7f9965205390>,
 'shopped': <gensim.models.word2vec.Vocab at 0x7f99652053d0>,
 'wash': <gensim.models.word2vec.Vocab at 0x7f9965205410>,
 'instruct': <gensim.models.word2vec.Vocab at 0x7f9965205450>,
 'kfc': <gensim.models.word2vec.Vocab at 0x7f9965205490>,
 'chevron': <gensim.models.word2vec.Vocab at 0x7f99652054d0>,
 'infused': <gensim.models.word2vec.Vocab at 0x7f996d606e90>,
 '35-40': <gensim.models.word2vec.Vocab at 0x7f9965205510>,
 '175': <gensim.models.word2vec.Vocab at 0x7f9965205550>,
 'clarity': <gensim.models.word2vec.Vocab at 0x7f9965205590>,
 'gaystraight': <gensim.models.word2vec.Vocab at 0x7f99652055d0>,
 'specially': <gensim.models.word2vec.Vocab at 0x7f9965205610>,
 'solstice': <gensim.models.word2vec.Vocab at 0x7f996d142d50>,
 'basketball': <gensim.models.word2vec.Vocab at 0x7f99652056d0>,
 'renovated': <gensim.models.word2vec.Vocab at 0x7f9965205710>,
 'service': <gensim.models.word2vec.Vocab at 0x7f9965205750>,
 'whorehouse': <gensim.models.word2vec.Vocab at 0x7f99653b0150>,
 'engagement': <gensim.models.word2vec.Vocab at 0x7f99652057d0>,
 'zinfandel': <gensim.models.word2vec.Vocab at 0x7f9965205810>,
 'reuben': <gensim.models.word2vec.Vocab at 0x7f9965205850>,
 'touting': <gensim.models.word2vec.Vocab at 0x7f9965205890>,
 'needed': <gensim.models.word2vec.Vocab at 0x7f99652058d0>,
 'mind-boggling': <gensim.models.word2vec.Vocab at 0x7f9965205910>,
 'grossness': <gensim.models.word2vec.Vocab at 0x7f9965205950>,
 'listed': <gensim.models.word2vec.Vocab at 0x7f9965205990>,
 'chugging': <gensim.models.word2vec.Vocab at 0x7f996d3abd10>,
 'vincent': <gensim.models.word2vec.Vocab at 0x7f99656d9890>,
 u'critter': <gensim.models.word2vec.Vocab at 0x7f9965205a50>,
 'recent': <gensim.models.word2vec.Vocab at 0x7f9965205a90>,
 'bitter': <gensim.models.word2vec.Vocab at 0x7f9965205ad0>,
 'ranging': <gensim.models.word2vec.Vocab at 0x7f9965205b10>,
 'listen': <gensim.models.word2vec.Vocab at 0x7f9965205b90>,
 'huffy': <gensim.models.word2vec.Vocab at 0x7f9965566990>,
 'malefemale': <gensim.models.word2vec.Vocab at 0x7f9965205bd0>,
 'cushiony': <gensim.models.word2vec.Vocab at 0x7f9965205c10>,
 'thursday-saturday': <gensim.models.word2vec.Vocab at 0x7f9965205c50>,
 'collapse': <gensim.models.word2vec.Vocab at 0x7f9965205cd0>,
 'kno': <gensim.models.word2vec.Vocab at 0x7f9965205d50>,
 'predictably': <gensim.models.word2vec.Vocab at 0x7f9965205d90>,
 'yelpers': <gensim.models.word2vec.Vocab at 0x7f9965715490>,
 'snooty': <gensim.models.word2vec.Vocab at 0x7f9965205dd0>,
 u'convention': <gensim.models.word2vec.Vocab at 0x7f99657d53d0>,
 'frowned': <gensim.models.word2vec.Vocab at 0x7f9965205e50>,
 'satisfaction': <gensim.models.word2vec.Vocab at 0x7f996576bf90>,
 'wisdom': <gensim.models.word2vec.Vocab at 0x7f99653a0810>,
 'nirvana': <gensim.models.word2vec.Vocab at 0x7f9965205ed0>,
 '14th': <gensim.models.word2vec.Vocab at 0x7f9965668d10>,
 'rectified': <gensim.models.word2vec.Vocab at 0x7f9965205f10>,
 'task': <gensim.models.word2vec.Vocab at 0x7f996d615050>,
 'predictable': <gensim.models.word2vec.Vocab at 0x7f9965205f90>,
 'evil': <gensim.models.word2vec.Vocab at 0x7f9965816810>,
 'chain-restaurant': <gensim.models.word2vec.Vocab at 0x7f9965206050>,
 'crawl': <gensim.models.word2vec.Vocab at 0x7f99652060d0>,
 'positively': <gensim.models.word2vec.Vocab at 0x7f9965206110>,
 'expanding': <gensim.models.word2vec.Vocab at 0x7f996569ba50>,
 'trek': <gensim.models.word2vec.Vocab at 0x7f9965206150>,
 u'peril': <gensim.models.word2vec.Vocab at 0x7f9965206190>,
 'showed': <gensim.models.word2vec.Vocab at 0x7f99652061d0>,
 'morphed': <gensim.models.word2vec.Vocab at 0x7f9965206290>,
 'panelling': <gensim.models.word2vec.Vocab at 0x7f996d6150d0>,
 'tree': <gensim.models.word2vec.Vocab at 0x7f9965206310>,
 'crave': <gensim.models.word2vec.Vocab at 0x7f9965566090>,
 'barly': <gensim.models.word2vec.Vocab at 0x7f99656f4890>,
 'shower': <gensim.models.word2vec.Vocab at 0x7f99652063d0>,
 'idle': <gensim.models.word2vec.Vocab at 0x7f9965206450>,
 'exclaimed': <gensim.models.word2vec.Vocab at 0x7f9965206490>,
 'skimmed': <gensim.models.word2vec.Vocab at 0x7f996d35da90>,
 'visist': <gensim.models.word2vec.Vocab at 0x7f9965206550>,
 'surei': <gensim.models.word2vec.Vocab at 0x7f996d30b850>,
 'tres': <gensim.models.word2vec.Vocab at 0x7f99652065d0>,
 'feeling': <gensim.models.word2vec.Vocab at 0x7f9965206610>,
 'old-': <gensim.models.word2vec.Vocab at 0x7f9965206650>,
 'cracked': <gensim.models.word2vec.Vocab at 0x7f996583d910>,
 'worldand': <gensim.models.word2vec.Vocab at 0x7f9965206690>,
 'waiterwaitress': <gensim.models.word2vec.Vocab at 0x7f99652066d0>,
 'acclaim': <gensim.models.word2vec.Vocab at 0x7f9965206710>,
 'a-pleasure': <gensim.models.word2vec.Vocab at 0x7f9965206750>,
 'willingness': <gensim.models.word2vec.Vocab at 0x7f996d2d1c10>,
 'exploring': <gensim.models.word2vec.Vocab at 0x7f99657d5550>,
 'longs': <gensim.models.word2vec.Vocab at 0x7f9965206810>,
 'boston': <gensim.models.word2vec.Vocab at 0x7f9965206850>,
 'spectrum': <gensim.models.word2vec.Vocab at 0x7f9965206890>,
 u'tallboy': <gensim.models.word2vec.Vocab at 0x7f99652068d0>,
 'untrained': <gensim.models.word2vec.Vocab at 0x7f9965206910>,
 'well-': <gensim.models.word2vec.Vocab at 0x7f9965206950>,
 'hug': <gensim.models.word2vec.Vocab at 0x7f99657d5590>,
 'corny': <gensim.models.word2vec.Vocab at 0x7f99652069d0>,
 'alicia': <gensim.models.word2vec.Vocab at 0x7f99656d9210>,
 'to-my-surprise': <gensim.models.word2vec.Vocab at 0x7f99657d55d0>,
 'chewiness': <gensim.models.word2vec.Vocab at 0x7f996d346050>,
 'garage-style': <gensim.models.word2vec.Vocab at 0x7f99658216d0>,
 'alive': <gensim.models.word2vec.Vocab at 0x7f996585a7d0>,
 'dozen': <gensim.models.word2vec.Vocab at 0x7f9965206b50>,
 'forgive': <gensim.models.word2vec.Vocab at 0x7f9965743290>,
 'cesar': <gensim.models.word2vec.Vocab at 0x7f9965566e50>,
 'wholesome': <gensim.models.word2vec.Vocab at 0x7f9965206c10>,
 'mostly': <gensim.models.word2vec.Vocab at 0x7f996d142850>,
 'person': <gensim.models.word2vec.Vocab at 0x7f9965206cd0>,
 '60th': <gensim.models.word2vec.Vocab at 0x7f9965206d90>,
 'soaked': <gensim.models.word2vec.Vocab at 0x7f9965206dd0>,
 'gripe': <gensim.models.word2vec.Vocab at 0x7f9965206e10>,
 'kaya': <gensim.models.word2vec.Vocab at 0x7f9965206e50>,
 'metallic': <gensim.models.word2vec.Vocab at 0x7f9965206e90>,
 'recommended': <gensim.models.word2vec.Vocab at 0x7f9965206ed0>,
 'causing': <gensim.models.word2vec.Vocab at 0x7f9965206f10>,
 'absorbed': <gensim.models.word2vec.Vocab at 0x7f9965206f50>,
 'amusing': <gensim.models.word2vec.Vocab at 0x7f9965206f90>,
 '101': <gensim.models.word2vec.Vocab at 0x7f996d42f350>,
 'season': <gensim.models.word2vec.Vocab at 0x7f99657d5710>,
 'siracha': <gensim.models.word2vec.Vocab at 0x7f9965207090>,
 'milled': <gensim.models.word2vec.Vocab at 0x7f99656fa110>,
 u'greenback': <gensim.models.word2vec.Vocab at 0x7f9965207110>,
 'beerfood': <gensim.models.word2vec.Vocab at 0x7f9965207150>,
 'rhcp': <gensim.models.word2vec.Vocab at 0x7f996d300690>,
 'tremens': <gensim.models.word2vec.Vocab at 0x7f996587bf50>,
 'smoked': <gensim.models.word2vec.Vocab at 0x7f99653d78d0>,
 'susie': <gensim.models.word2vec.Vocab at 0x7f99652071d0>,
 'committing': <gensim.models.word2vec.Vocab at 0x7f9965207210>,
 'shall': <gensim.models.word2vec.Vocab at 0x7f9965207250>,
 'thrilled': <gensim.models.word2vec.Vocab at 0x7f9965207290>,
 'screwing': <gensim.models.word2vec.Vocab at 0x7f99657d5750>,
 'doin': <gensim.models.word2vec.Vocab at 0x7f9965207310>,
 'mystique': <gensim.models.word2vec.Vocab at 0x7f9965207350>,
 'barvenue': <gensim.models.word2vec.Vocab at 0x7f9965641850>,
 'cinematic': <gensim.models.word2vec.Vocab at 0x7f99652073d0>,
 'welll': <gensim.models.word2vec.Vocab at 0x7f996d2fc910>,
 'mouth': <gensim.models.word2vec.Vocab at 0x7f9965207450>,
 'addict': <gensim.models.word2vec.Vocab at 0x7f9965207490>,
 u'letter': <gensim.models.word2vec.Vocab at 0x7f99652074d0>,
 'bread-y': <gensim.models.word2vec.Vocab at 0x7f996d2fcd90>,
 'retaining': <gensim.models.word2vec.Vocab at 0x7f996d2fced0>,
 'plexi-glass': <gensim.models.word2vec.Vocab at 0x7f99658dc7d0>,
 'drought': <gensim.models.word2vec.Vocab at 0x7f99652075d0>,
 u'dummy': <gensim.models.word2vec.Vocab at 0x7f9965207610>,
 u'singer': <gensim.models.word2vec.Vocab at 0x7f9965207650>,
 'stupid': <gensim.models.word2vec.Vocab at 0x7f996d63fd10>,
 'episode': <gensim.models.word2vec.Vocab at 0x7f99652076d0>,
 'reasonably-priced': <gensim.models.word2vec.Vocab at 0x7f9965207710>,
 'ice-machine': <gensim.models.word2vec.Vocab at 0x7f9965207750>,
 'excuse-for': <gensim.models.word2vec.Vocab at 0x7f9965207790>,
 'grove': <gensim.models.word2vec.Vocab at 0x7f99652077d0>,
 u'professor': <gensim.models.word2vec.Vocab at 0x7f9965207810>,
 'camp': <gensim.models.word2vec.Vocab at 0x7f9965207850>,
 'f-bombs': <gensim.models.word2vec.Vocab at 0x7f9965207890>,
 'cumbia': <gensim.models.word2vec.Vocab at 0x7f99652078d0>,
 'serve-as': <gensim.models.word2vec.Vocab at 0x7f9965207910>,
 'singed': <gensim.models.word2vec.Vocab at 0x7f9965207990>,
 'paneling': <gensim.models.word2vec.Vocab at 0x7f996d615510>,
 u'pharmacist': <gensim.models.word2vec.Vocab at 0x7f99656c11d0>,
 'detriment': <gensim.models.word2vec.Vocab at 0x7f9965207a90>,
 'pre-cut': <gensim.models.word2vec.Vocab at 0x7f9965207b10>,
 'mating': <gensim.models.word2vec.Vocab at 0x7f9965207b50>,
 'scream': <gensim.models.word2vec.Vocab at 0x7f9965207b90>,
 'incomplete': <gensim.models.word2vec.Vocab at 0x7f9965904610>,
 'marvel': <gensim.models.word2vec.Vocab at 0x7f9965207c10>,
 'saying': <gensim.models.word2vec.Vocab at 0x7f9965207c50>,
 'boogie': <gensim.models.word2vec.Vocab at 0x7f9965207c90>,
 'bomb': <gensim.models.word2vec.Vocab at 0x7f9965207cd0>,
 'braising': <gensim.models.word2vec.Vocab at 0x7f9965207d10>,
 'nodded': <gensim.models.word2vec.Vocab at 0x7f9965798e90>,
 'post-work': <gensim.models.word2vec.Vocab at 0x7f9965207d50>,
 'tequila': <gensim.models.word2vec.Vocab at 0x7f9965207d90>,
 'sweetner': <gensim.models.word2vec.Vocab at 0x7f99659122d0>,
 'bonnie': <gensim.models.word2vec.Vocab at 0x7f9965207e10>,
 'loitered': <gensim.models.word2vec.Vocab at 0x7f9965207e50>,
 'padded': <gensim.models.word2vec.Vocab at 0x7f9965207e90>,
 'prix': <gensim.models.word2vec.Vocab at 0x7f9965207ed0>,
 'fennel': <gensim.models.word2vec.Vocab at 0x7f9965207f10>,
 'gauge': <gensim.models.word2vec.Vocab at 0x7f9965207f50>,
 'hazy': <gensim.models.word2vec.Vocab at 0x7f9965566690>,
 'ulcer': <gensim.models.word2vec.Vocab at 0x7f9965207fd0>,
 'participate': <gensim.models.word2vec.Vocab at 0x7f9965208050>,
 'lethal': <gensim.models.word2vec.Vocab at 0x7f9965208090>,
 'heckled': <gensim.models.word2vec.Vocab at 0x7f99652080d0>,
 'reinvented': <gensim.models.word2vec.Vocab at 0x7f9965208110>,
 'cheaply': <gensim.models.word2vec.Vocab at 0x7f9965208150>,
 'mellow': <gensim.models.word2vec.Vocab at 0x7f996572d510>,
 'thai': <gensim.models.word2vec.Vocab at 0x7f996d142550>,
 u'caper': <gensim.models.word2vec.Vocab at 0x7f99652081d0>,
 'orleans': <gensim.models.word2vec.Vocab at 0x7f9965208210>,
 'rock-hard': <gensim.models.word2vec.Vocab at 0x7f9965208250>,
 'busy': <gensim.models.word2vec.Vocab at 0x7f9965208290>,
 'layout': <gensim.models.word2vec.Vocab at 0x7f99652082d0>,
 '695': <gensim.models.word2vec.Vocab at 0x7f9965208350>,
 'quaint': <gensim.models.word2vec.Vocab at 0x7f9965208390>,
 'menu': <gensim.models.word2vec.Vocab at 0x7f99652083d0>,
 'cocked': <gensim.models.word2vec.Vocab at 0x7f996566dd50>,
 '699': <gensim.models.word2vec.Vocab at 0x7f9965208410>,
 'buxom': <gensim.models.word2vec.Vocab at 0x7f9965208450>,
 u'bust': <gensim.models.word2vec.Vocab at 0x7f9965208490>,
 'subbed': <gensim.models.word2vec.Vocab at 0x7f99657d59d0>,
 'in-the-world': <gensim.models.word2vec.Vocab at 0x7f9965208510>,
 'cougar': <gensim.models.word2vec.Vocab at 0x7f9965208550>,
 'theme': <gensim.models.word2vec.Vocab at 0x7f9965208590>,
 'bliss': <gensim.models.word2vec.Vocab at 0x7f99652085d0>,
 'rick': <gensim.models.word2vec.Vocab at 0x7f9965208610>,
 'rich': <gensim.models.word2vec.Vocab at 0x7f9965208650>,
 'foolishly': <gensim.models.word2vec.Vocab at 0x7f99652086d0>,
 'longhorn': <gensim.models.word2vec.Vocab at 0x7f9965208710>,
 'rice': <gensim.models.word2vec.Vocab at 0x7f9965208750>,
 'themi': <gensim.models.word2vec.Vocab at 0x7f99652087d0>,
 'clorox': <gensim.models.word2vec.Vocab at 0x7f9965208810>,
 'lady': <gensim.models.word2vec.Vocab at 0x7f996d14dd50>,
 'plate': <gensim.models.word2vec.Vocab at 0x7f9965208850>,
 'klein': <gensim.models.word2vec.Vocab at 0x7f9965208890>,
 'champaign': <gensim.models.word2vec.Vocab at 0x7f9965208910>,
 'waaaaaay': <gensim.models.word2vec.Vocab at 0x7f9965208950>,
 'drinkwater': <gensim.models.word2vec.Vocab at 0x7f99652089d0>,
 'foremost': <gensim.models.word2vec.Vocab at 0x7f9965208a10>,
 'pocket': <gensim.models.word2vec.Vocab at 0x7f9965208a50>,
 'alcohol': <gensim.models.word2vec.Vocab at 0x7f996573dc50>,
 u'cushion': <gensim.models.word2vec.Vocab at 0x7f9965208ad0>,
 'altogether': <gensim.models.word2vec.Vocab at 0x7f9965208b10>,
 'dinky': <gensim.models.word2vec.Vocab at 0x7f996d142210>,
 'confusion': <gensim.models.word2vec.Vocab at 0x7f9965832a90>,
 u'chutney': <gensim.models.word2vec.Vocab at 0x7f9965208bd0>,
 'unfortunately': <gensim.models.word2vec.Vocab at 0x7f99657d5b50>,
 'droning': <gensim.models.word2vec.Vocab at 0x7f9965208c50>,
 'increasing': <gensim.models.word2vec.Vocab at 0x7f996d2164d0>,
 'sauv': <gensim.models.word2vec.Vocab at 0x7f9965208d10>,
 'spilling': <gensim.models.word2vec.Vocab at 0x7f9965208d50>,
 'nicely': <gensim.models.word2vec.Vocab at 0x7f9965208d90>,
 'tights': <gensim.models.word2vec.Vocab at 0x7f9965208dd0>,
 'dipping': <gensim.models.word2vec.Vocab at 0x7f9965208e10>,
 u'pretzel': <gensim.models.word2vec.Vocab at 0x7f9965208e50>,
 'patch': <gensim.models.word2vec.Vocab at 0x7f9965208e90>,
 u'greene': <gensim.models.word2vec.Vocab at 0x7f9965208ed0>,
 'you-know-what': <gensim.models.word2vec.Vocab at 0x7f9965208f50>,
 'piggy': <gensim.models.word2vec.Vocab at 0x7f9965208f90>,
 'wait-on': <gensim.models.word2vec.Vocab at 0x7f9965209050>,
 'mandy': <gensim.models.word2vec.Vocab at 0x7f996581ced0>,
 'shadyside': <gensim.models.word2vec.Vocab at 0x7f9965209090>,
 'red-wine': <gensim.models.word2vec.Vocab at 0x7f99655edd50>,
 'bleu': <gensim.models.word2vec.Vocab at 0x7f9965209110>,
 'blew': <gensim.models.word2vec.Vocab at 0x7f9965209150>,
 'mandatory': <gensim.models.word2vec.Vocab at 0x7f9965209190>,
 'disaster': <gensim.models.word2vec.Vocab at 0x7f99652091d0>,
 'fair': <gensim.models.word2vec.Vocab at 0x7f9965209210>,
 u'specialist': <gensim.models.word2vec.Vocab at 0x7f99652042d0>,
 'clarified': <gensim.models.word2vec.Vocab at 0x7f9965209290>,
 'branding': <gensim.models.word2vec.Vocab at 0x7f99652092d0>,
 'peripheral': <gensim.models.word2vec.Vocab at 0x7f99658f5e90>,
 'evolving': <gensim.models.word2vec.Vocab at 0x7f996d5c1f50>,
 'recruit': <gensim.models.word2vec.Vocab at 0x7f996d1428d0>,
 'unexpectedly': <gensim.models.word2vec.Vocab at 0x7f9965209410>,
 'bled': <gensim.models.word2vec.Vocab at 0x7f9965209450>,
 'goodnight': <gensim.models.word2vec.Vocab at 0x7f9965209490>,
 'radius': <gensim.models.word2vec.Vocab at 0x7f9965209510>,
 'result': <gensim.models.word2vec.Vocab at 0x7f9965209550>,
 'huntersville': <gensim.models.word2vec.Vocab at 0x7f9965209590>,
 'fail': <gensim.models.word2vec.Vocab at 0x7f99652095d0>,
 'pizza-roll': <gensim.models.word2vec.Vocab at 0x7f9965209610>,
 'news': <gensim.models.word2vec.Vocab at 0x7f9965832dd0>,
 'nocturnal': <gensim.models.word2vec.Vocab at 0x7f9965209650>,
 'hammer': <gensim.models.word2vec.Vocab at 0x7f9965209690>,
 'bleh': <gensim.models.word2vec.Vocab at 0x7f99652096d0>,
 'best': <gensim.models.word2vec.Vocab at 0x7f9965209710>,
 'cheapskate': <gensim.models.word2vec.Vocab at 0x7f99654ae990>,
 'sidebar': <gensim.models.word2vec.Vocab at 0x7f996d608b90>,
 '48th': <gensim.models.word2vec.Vocab at 0x7f99652097d0>,
 'pressured': <gensim.models.word2vec.Vocab at 0x7f9965209810>,
 'gnarly': <gensim.models.word2vec.Vocab at 0x7f9965738b90>,
 'deadpan': <gensim.models.word2vec.Vocab at 0x7f9965209850>,
 'hunker': <gensim.models.word2vec.Vocab at 0x7f9965209890>,
 u'butch': <gensim.models.word2vec.Vocab at 0x7f996586aa90>,
 'solace': <gensim.models.word2vec.Vocab at 0x7f99654b1a10>,
 'restaurantlounge': <gensim.models.word2vec.Vocab at 0x7f99652098d0>,
 'avery': <gensim.models.word2vec.Vocab at 0x7f9965209910>,
 u'score': <gensim.models.word2vec.Vocab at 0x7f9965209950>,
 'melissa': <gensim.models.word2vec.Vocab at 0x7f99652099d0>,
 'yogurt': <gensim.models.word2vec.Vocab at 0x7f9965209a50>,
 'ira': <gensim.models.word2vec.Vocab at 0x7f996d5cef50>,
 'cubby': <gensim.models.word2vec.Vocab at 0x7f9965209b10>,
 u'pirate': <gensim.models.word2vec.Vocab at 0x7f9965209b50>,
 'skimpy': <gensim.models.word2vec.Vocab at 0x7f9965209bd0>,
 u'preserve': <gensim.models.word2vec.Vocab at 0x7f9965209c10>,
 'indecisive': <gensim.models.word2vec.Vocab at 0x7f9965209c50>,
 'lamar': <gensim.models.word2vec.Vocab at 0x7f9965209c90>,
 'never': <gensim.models.word2vec.Vocab at 0x7f9965570390>,
 'extend': <gensim.models.word2vec.Vocab at 0x7f9965209d10>,
 'nature': <gensim.models.word2vec.Vocab at 0x7f9965209d50>,
 'rolled': <gensim.models.word2vec.Vocab at 0x7f9965209d90>,
 'smelled': <gensim.models.word2vec.Vocab at 0x7f9965209dd0>,
 'switzerland': <gensim.models.word2vec.Vocab at 0x7f996d2a26d0>,
 'whistled': <gensim.models.word2vec.Vocab at 0x7f99656a0c50>,
 'souvenir': <gensim.models.word2vec.Vocab at 0x7f9965209ed0>,
 'twinkling': <gensim.models.word2vec.Vocab at 0x7f9965209f10>,
 'spatzle': <gensim.models.word2vec.Vocab at 0x7f9965209f50>,
 'brazen': <gensim.models.word2vec.Vocab at 0x7f99656bc790>,
 'wtf': <gensim.models.word2vec.Vocab at 0x7f996520e050>,
 'poisoning': <gensim.models.word2vec.Vocab at 0x7f99657d5e50>,
 'mahimahi': <gensim.models.word2vec.Vocab at 0x7f996520e0d0>,
 'carbon': <gensim.models.word2vec.Vocab at 0x7f996520e110>,
 'debt': <gensim.models.word2vec.Vocab at 0x7f996520e150>,
 'falbos': <gensim.models.word2vec.Vocab at 0x7f996520e1d0>,
 'roller': <gensim.models.word2vec.Vocab at 0x7f996520e210>,
 'pity': <gensim.models.word2vec.Vocab at 0x7f996520e250>,
 'dente': <gensim.models.word2vec.Vocab at 0x7f996520e290>,
 'bartenderwaitress': <gensim.models.word2vec.Vocab at 0x7f996520e2d0>,
 'accident': <gensim.models.word2vec.Vocab at 0x7f996520e310>,
 'hued': <gensim.models.word2vec.Vocab at 0x7f996520e350>,
 'veer': <gensim.models.word2vec.Vocab at 0x7f996520e390>,
 'disdain': <gensim.models.word2vec.Vocab at 0x7f996520e3d0>,
 'bachelorette': <gensim.models.word2vec.Vocab at 0x7f996520e410>,
 'country': <gensim.models.word2vec.Vocab at 0x7f996520e450>,
 'heating': <gensim.models.word2vec.Vocab at 0x7f996520e4d0>,
 'demanded': <gensim.models.word2vec.Vocab at 0x7f996520e510>,
 'stuttgart': <gensim.models.word2vec.Vocab at 0x7f996520e550>,
 '109': <gensim.models.word2vec.Vocab at 0x7f99658bc810>,
 'singer-songwriters': <gensim.models.word2vec.Vocab at 0x7f996520e5d0>,
 'planned': <gensim.models.word2vec.Vocab at 0x7f996520e610>,
 'lookin': <gensim.models.word2vec.Vocab at 0x7f996520e650>,
 'logic': <gensim.models.word2vec.Vocab at 0x7f996520e690>,
 'pita': <gensim.models.word2vec.Vocab at 0x7f996520e6d0>,
 'giddyup': <gensim.models.word2vec.Vocab at 0x7f996520e710>,
 'argue': <gensim.models.word2vec.Vocab at 0x7f996520e750>,
 'tinge': <gensim.models.word2vec.Vocab at 0x7f996520e790>,
 'asked': <gensim.models.word2vec.Vocab at 0x7f996520e7d0>,
 'schmooze': <gensim.models.word2vec.Vocab at 0x7f996520e810>,
 '30th': <gensim.models.word2vec.Vocab at 0x7f996520e850>,
 'mortified': <gensim.models.word2vec.Vocab at 0x7f996520e890>,
 'drinksfood': <gensim.models.word2vec.Vocab at 0x7f996d615c10>,
 'miscommunication': <gensim.models.word2vec.Vocab at 0x7f996520e910>,
 'irresponsible': <gensim.models.word2vec.Vocab at 0x7f996520e990>,
 'groupon': <gensim.models.word2vec.Vocab at 0x7f996520ea10>,
 'waaay': <gensim.models.word2vec.Vocab at 0x7f996520ea50>,
 '2nd': <gensim.models.word2vec.Vocab at 0x7f996520ea90>,
 'cult': <gensim.models.word2vec.Vocab at 0x7f99653c4cd0>,
 'canyon': <gensim.models.word2vec.Vocab at 0x7f996520eb10>,
 'gleaming': <gensim.models.word2vec.Vocab at 0x7f996520eb50>,
 'leberkase': <gensim.models.word2vec.Vocab at 0x7f996520eb90>,
 'blending': <gensim.models.word2vec.Vocab at 0x7f996520ebd0>,
 'darlin': <gensim.models.word2vec.Vocab at 0x7f996520ec10>,
 'munched': <gensim.models.word2vec.Vocab at 0x7f996520ec50>,
 'humming': <gensim.models.word2vec.Vocab at 0x7f99be5c18d0>,
 'lounge-y': <gensim.models.word2vec.Vocab at 0x7f996520ed10>,
 '100': <gensim.models.word2vec.Vocab at 0x7f9965570710>,
 '255': <gensim.models.word2vec.Vocab at 0x7f996d5acd10>,
 'penalize': <gensim.models.word2vec.Vocab at 0x7f996520edd0>,
 'in-the-words-of': <gensim.models.word2vec.Vocab at 0x7f996520ee10>,
 'underdone': <gensim.models.word2vec.Vocab at 0x7f996d5b6150>,
 'billing': <gensim.models.word2vec.Vocab at 0x7f99be5c1f50>,
 'pinball': <gensim.models.word2vec.Vocab at 0x7f996520ef10>,
 'union': <gensim.models.word2vec.Vocab at 0x7f996520ef50>,
 'upyou': <gensim.models.word2vec.Vocab at 0x7f996520ef90>,
 'fri': <gensim.models.word2vec.Vocab at 0x7f996520efd0>,
 'remained': <gensim.models.word2vec.Vocab at 0x7f996d14e610>,
 'fro': <gensim.models.word2vec.Vocab at 0x7f9965214090>,
 'the-point': <gensim.models.word2vec.Vocab at 0x7f99657106d0>,
 'upside-down': <gensim.models.word2vec.Vocab at 0x7f9965214150>,
 'menuthe': <gensim.models.word2vec.Vocab at 0x7f9965214190>,
 'much': <gensim.models.word2vec.Vocab at 0x7f99652141d0>,
 'plopping': <gensim.models.word2vec.Vocab at 0x7f9965214210>,
 'stadium': <gensim.models.word2vec.Vocab at 0x7f9965214250>,
 'slaw': <gensim.models.word2vec.Vocab at 0x7f996d14efd0>,
 'privilege': <gensim.models.word2vec.Vocab at 0x7f99652142d0>,
 u'fry': <gensim.models.word2vec.Vocab at 0x7f9965214310>,
 u'jackass': <gensim.models.word2vec.Vocab at 0x7f996d32a5d0>,
 'tallest': <gensim.models.word2vec.Vocab at 0x7f9965214390>,
 're-filled': <gensim.models.word2vec.Vocab at 0x7f99652143d0>,
 'dixon': <gensim.models.word2vec.Vocab at 0x7f996d615e90>,
 'conversational': <gensim.models.word2vec.Vocab at 0x7f9965214490>,
 u'life': <gensim.models.word2vec.Vocab at 0x7f99652144d0>,
 'recomend': <gensim.models.word2vec.Vocab at 0x7f9965214550>,
 'spit': <gensim.models.word2vec.Vocab at 0x7f9965214590>,
 'eastern': <gensim.models.word2vec.Vocab at 0x7f99652145d0>,
 '25c': <gensim.models.word2vec.Vocab at 0x7f9965214610>,
 'milfs': <gensim.models.word2vec.Vocab at 0x7f9965214650>,
 'homies': <gensim.models.word2vec.Vocab at 0x7f996d615f10>,
 u'worker': <gensim.models.word2vec.Vocab at 0x7f9965214690>,
 'backthe': <gensim.models.word2vec.Vocab at 0x7f996d35dc90>,
 'wish': <gensim.models.word2vec.Vocab at 0x7f9965865b10>,
 'dave': <gensim.models.word2vec.Vocab at 0x7f9965214750>,
 'lift': <gensim.models.word2vec.Vocab at 0x7f9965214790>,
 'chile': <gensim.models.word2vec.Vocab at 0x7f99652147d0>,
 'child': <gensim.models.word2vec.Vocab at 0x7f9965214810>,
 'fattiest': <gensim.models.word2vec.Vocab at 0x7f9965214850>,
 u'chili': <gensim.models.word2vec.Vocab at 0x7f9965214890>,
 '10minutes': <gensim.models.word2vec.Vocab at 0x7f996575a1d0>,
 'spin': <gensim.models.word2vec.Vocab at 0x7f9965214910>,
 'bridal': <gensim.models.word2vec.Vocab at 0x7f996d615f90>,
 'modern-day': <gensim.models.word2vec.Vocab at 0x7f9965214990>,
 'wildcat': <gensim.models.word2vec.Vocab at 0x7f996d328890>,
 'wait-person': <gensim.models.word2vec.Vocab at 0x7f9965214a10>,
 'commerce': <gensim.models.word2vec.Vocab at 0x7f996d5c1090>,
 'linkin': <gensim.models.word2vec.Vocab at 0x7f996d328510>,
 'restaurantsports': <gensim.models.word2vec.Vocab at 0x7f9965214ad0>,
 '430-630': <gensim.models.word2vec.Vocab at 0x7f9965214b10>,
 'tarte': <gensim.models.word2vec.Vocab at 0x7f9965627dd0>,
 'solvable': <gensim.models.word2vec.Vocab at 0x7f996d5f2050>,
 'dissect': <gensim.models.word2vec.Vocab at 0x7f9965214bd0>,
 'medium-well': <gensim.models.word2vec.Vocab at 0x7f9965214c50>,
 'professionally': <gensim.models.word2vec.Vocab at 0x7f9965214c90>,
 'employ': <gensim.models.word2vec.Vocab at 0x7f9965214d10>,
 'light-rail': <gensim.models.word2vec.Vocab at 0x7f9965214d90>,
 'real-deal': <gensim.models.word2vec.Vocab at 0x7f9965214e10>,
 'enourmous': <gensim.models.word2vec.Vocab at 0x7f9965214e90>,
 'garnish': <gensim.models.word2vec.Vocab at 0x7f9965727f50>,
 'flooding': <gensim.models.word2vec.Vocab at 0x7f9965214ed0>,
 'k': <gensim.models.word2vec.Vocab at 0x7f9965214f10>,
 'picturing': <gensim.models.word2vec.Vocab at 0x7f9965214f50>,
 'remembering': <gensim.models.word2vec.Vocab at 0x7f9965214f90>,
 'ridiculously': <gensim.models.word2vec.Vocab at 0x7f996d5f2150>,
 '075': <gensim.models.word2vec.Vocab at 0x7f996d74d050>,
 u'congratulation': <gensim.models.word2vec.Vocab at 0x7f996d74d090>,
 'saltiness': <gensim.models.word2vec.Vocab at 0x7f996d74d0d0>,
 'played': <gensim.models.word2vec.Vocab at 0x7f996d74d110>,
 'albiet': <gensim.models.word2vec.Vocab at 0x7f996d74d150>,
 'delicatessen': <gensim.models.word2vec.Vocab at 0x7f996d74d190>,
 'expat': <gensim.models.word2vec.Vocab at 0x7f996d74d1d0>,
 'conditioned': <gensim.models.word2vec.Vocab at 0x7f996d74d290>,
 'letdown': <gensim.models.word2vec.Vocab at 0x7f996d74d2d0>,
 u'player': <gensim.models.word2vec.Vocab at 0x7f996d74d310>,
 'overpowers': <gensim.models.word2vec.Vocab at 0x7f996d74d350>,
 'eighteen': <gensim.models.word2vec.Vocab at 0x7f996d74d390>,
 'upscale': <gensim.models.word2vec.Vocab at 0x7f996d74d3d0>,
 'anticipating': <gensim.models.word2vec.Vocab at 0x7f996d74d410>,
 'madonna': <gensim.models.word2vec.Vocab at 0x7f996d74d450>,
 'primanti': <gensim.models.word2vec.Vocab at 0x7f9965715050>,
 'doorman': <gensim.models.word2vec.Vocab at 0x7f996d74d490>,
 '5050': <gensim.models.word2vec.Vocab at 0x7f996d74d4d0>,
 'said-': <gensim.models.word2vec.Vocab at 0x7f996d33a6d0>,
 'trusted': <gensim.models.word2vec.Vocab at 0x7f996d74d550>,
 'memorial': <gensim.models.word2vec.Vocab at 0x7f996d74d590>,
 'thingy': <gensim.models.word2vec.Vocab at 0x7f996d74d5d0>,
 'portobella': <gensim.models.word2vec.Vocab at 0x7f996d74d650>,
 'taped': <gensim.models.word2vec.Vocab at 0x7f99654af090>,
 'portobello': <gensim.models.word2vec.Vocab at 0x7f996d74d6d0>,
 'toaster': <gensim.models.word2vec.Vocab at 0x7f996d74d710>,
 'exposed-brick': <gensim.models.word2vec.Vocab at 0x7f996d74d750>,
 'doofus': <gensim.models.word2vec.Vocab at 0x7f996d74d790>,
 'burger-': <gensim.models.word2vec.Vocab at 0x7f996d74d7d0>,
 '10yrs': <gensim.models.word2vec.Vocab at 0x7f996d74d810>,
 'spews': <gensim.models.word2vec.Vocab at 0x7f996d74d850>,
 'haphazard': <gensim.models.word2vec.Vocab at 0x7f996d74d890>,
 'split': <gensim.models.word2vec.Vocab at 0x7f996d74d8d0>,
 'big': <gensim.models.word2vec.Vocab at 0x7f996d5f2310>,
 'thinly': <gensim.models.word2vec.Vocab at 0x7f996585f0d0>,
 'thick-cut': <gensim.models.word2vec.Vocab at 0x7f996d74d950>,
 'electro': <gensim.models.word2vec.Vocab at 0x7f996d74d990>,
 'toasted': <gensim.models.word2vec.Vocab at 0x7f996d74d9d0>,
 'european': <gensim.models.word2vec.Vocab at 0x7f996d74da10>,
 'fairly': <gensim.models.word2vec.Vocab at 0x7f996d74da50>,
 'get-busy': <gensim.models.word2vec.Vocab at 0x7f996d74da90>,
 'boiled': <gensim.models.word2vec.Vocab at 0x7f996d74dad0>,
 'effortlessly': <gensim.models.word2vec.Vocab at 0x7f996d74db10>,
 'swizz': <gensim.models.word2vec.Vocab at 0x7f996d74db50>,
 'pesky': <gensim.models.word2vec.Vocab at 0x7f9965816090>,
 'updown': <gensim.models.word2vec.Vocab at 0x7f996d74dbd0>,
 'permit': <gensim.models.word2vec.Vocab at 0x7f9965570c10>,
 'middle-aged': <gensim.models.word2vec.Vocab at 0x7f996d74dc50>,
 'amys': <gensim.models.word2vec.Vocab at 0x7f996d74dc90>,
 'marched': <gensim.models.word2vec.Vocab at 0x7f996d74dcd0>,
 'preachy': <gensim.models.word2vec.Vocab at 0x7f996d74dd10>,
 'ownership': <gensim.models.word2vec.Vocab at 0x7f996d74dd50>,
 'supper': <gensim.models.word2vec.Vocab at 0x7f996d74dd90>,
 'saidi': <gensim.models.word2vec.Vocab at 0x7f996d74ddd0>,
 'elderflower': <gensim.models.word2vec.Vocab at 0x7f996d74de10>,
 'metalwork': <gensim.models.word2vec.Vocab at 0x7f996d74de50>,
 'haggard': <gensim.models.word2vec.Vocab at 0x7f996d74de90>,
 'tune': <gensim.models.word2vec.Vocab at 0x7f996d74ded0>,
 '205': <gensim.models.word2vec.Vocab at 0x7f99653e8150>,
 'uofa': <gensim.models.word2vec.Vocab at 0x7f9965678750>,
 'stupendous': <gensim.models.word2vec.Vocab at 0x7f996d74df90>,
 'make-the-drive': <gensim.models.word2vec.Vocab at 0x7f996d746090>,
 'echoed': <gensim.models.word2vec.Vocab at 0x7f996d7460d0>,
 'binions': <gensim.models.word2vec.Vocab at 0x7f9965207ad0>,
 u'academic': <gensim.models.word2vec.Vocab at 0x7f996d746190>,
 'bonne': <gensim.models.word2vec.Vocab at 0x7f996d746210>,
 'goofing': <gensim.models.word2vec.Vocab at 0x7f996d746250>,
 'bavarois': <gensim.models.word2vec.Vocab at 0x7f996d746290>,
 'thing-': <gensim.models.word2vec.Vocab at 0x7f996d7462d0>,
 'kinkos': <gensim.models.word2vec.Vocab at 0x7f9965673810>,
 'eagle': <gensim.models.word2vec.Vocab at 0x7f99657caed0>,
 'corporate': <gensim.models.word2vec.Vocab at 0x7f996d746310>,
 'relaly': <gensim.models.word2vec.Vocab at 0x7f996d746350>,
 u'plaque': <gensim.models.word2vec.Vocab at 0x7f996d746390>,
 'landshark': <gensim.models.word2vec.Vocab at 0x7f996d7463d0>,
 'wholeys': <gensim.models.word2vec.Vocab at 0x7f996d746410>,
 'gigolo': <gensim.models.word2vec.Vocab at 0x7f996d746450>,
 'capitol': <gensim.models.word2vec.Vocab at 0x7f996d746490>,
 'golden': <gensim.models.word2vec.Vocab at 0x7f996d7464d0>,
 'scam': <gensim.models.word2vec.Vocab at 0x7f99657b4690>,
 'distribute': <gensim.models.word2vec.Vocab at 0x7f996d746510>,
 'sleepy': <gensim.models.word2vec.Vocab at 0x7f996d746550>,
 'fantastic': <gensim.models.word2vec.Vocab at 0x7f9965570e10>,
 'disguise': <gensim.models.word2vec.Vocab at 0x7f996d7465d0>,
 'exclaiming': <gensim.models.word2vec.Vocab at 0x7f996d746690>,
 'any-longer': <gensim.models.word2vec.Vocab at 0x7f996d7466d0>,
 'rotates': <gensim.models.word2vec.Vocab at 0x7f996d746710>,
 'rushing': <gensim.models.word2vec.Vocab at 0x7f996d746750>,
 'amusingly': <gensim.models.word2vec.Vocab at 0x7f996d746790>,
 'previous': <gensim.models.word2vec.Vocab at 0x7f996d7467d0>,
 'hah': <gensim.models.word2vec.Vocab at 0x7f996d746810>,
 'alum': <gensim.models.word2vec.Vocab at 0x7f996d746850>,
 'handshake': <gensim.models.word2vec.Vocab at 0x7f996d746890>,
 'enters': <gensim.models.word2vec.Vocab at 0x7f996d7468d0>,
 'chihuly': <gensim.models.word2vec.Vocab at 0x7f99657d7a10>,
 u'han': <gensim.models.word2vec.Vocab at 0x7f996d746990>,
 'out-of-town': <gensim.models.word2vec.Vocab at 0x7f996d746a10>,
 'old-fashioned': <gensim.models.word2vec.Vocab at 0x7f996d746a90>,
 'emphasis': <gensim.models.word2vec.Vocab at 0x7f996d367690>,
 'pub-like': <gensim.models.word2vec.Vocab at 0x7f996d746b50>,
 'haz': <gensim.models.word2vec.Vocab at 0x7f996d746bd0>,
 'richie': <gensim.models.word2vec.Vocab at 0x7f996d746c10>,
 'easy': <gensim.models.word2vec.Vocab at 0x7f996d746c50>,
 'prison': <gensim.models.word2vec.Vocab at 0x7f996d746c90>,
 u'enchilada': <gensim.models.word2vec.Vocab at 0x7f996d746cd0>,
 'bnb': <gensim.models.word2vec.Vocab at 0x7f996d2be9d0>,
 'har': <gensim.models.word2vec.Vocab at 0x7f996d746d50>,
 'east': <gensim.models.word2vec.Vocab at 0x7f996d746d90>,
 'hat': <gensim.models.word2vec.Vocab at 0x7f996d746dd0>,
 '20-25': <gensim.models.word2vec.Vocab at 0x7f996d746e10>,
 'prententious': <gensim.models.word2vec.Vocab at 0x7f996d746e90>,
 'casually': <gensim.models.word2vec.Vocab at 0x7f996d746ed0>,
 'quirk': <gensim.models.word2vec.Vocab at 0x7f996d746f10>,
 'survival': <gensim.models.word2vec.Vocab at 0x7f996d746f90>,
 'daytona': <gensim.models.word2vec.Vocab at 0x7f996d143850>,
 u'obscenity': <gensim.models.word2vec.Vocab at 0x7f996d746fd0>,
 '1150': <gensim.models.word2vec.Vocab at 0x7f99c7d46910>,
 'sad-face': <gensim.models.word2vec.Vocab at 0x7f996d75f090>,
 'gristle': <gensim.models.word2vec.Vocab at 0x7f9965848c10>,
 'possibly': <gensim.models.word2vec.Vocab at 0x7f996d75f0d0>,
 'otherworldly': <gensim.models.word2vec.Vocab at 0x7f996d75f150>,
 'indicative': <gensim.models.word2vec.Vocab at 0x7f996d75f190>,
 'birth': <gensim.models.word2vec.Vocab at 0x7f996d75f1d0>,
 'sorority': <gensim.models.word2vec.Vocab at 0x7f996575a8d0>,
 'unlikely': <gensim.models.word2vec.Vocab at 0x7f996d45ff10>,
 'imposed': <gensim.models.word2vec.Vocab at 0x7f996d300310>,
 'shadow': <gensim.models.word2vec.Vocab at 0x7f996d75f290>,
 'unique': <gensim.models.word2vec.Vocab at 0x7f996d75f2d0>,
 ...}

In [107]:
model.syn0.shape


Out[107]:
(7626, 100)

In [108]:
model.syn0.shape


Out[108]:
(7626, 100)

In [109]:


In [110]:
model['beer']


Out[110]:
array([-0.11914355, -0.00848406, -0.25816774,  0.05004114, -0.13797277,
       -0.07304802,  0.07144317, -0.00289828,  0.00988765, -0.0521464 ,
       -0.02484666, -0.05874219,  0.16049536, -0.00942174,  0.15264362,
        0.0524993 ,  0.01947534, -0.09520859, -0.04392029, -0.17615482,
       -0.19804238, -0.09196329, -0.0707287 ,  0.17948456,  0.03011344,
       -0.13420026, -0.07682815, -0.06674536, -0.06478921,  0.05593799,
       -0.22613293,  0.01537087,  0.05933586, -0.07667404,  0.08785174,
       -0.04805563, -0.10572113,  0.01903196,  0.06023778, -0.15284617,
        0.00767768,  0.07501449, -0.01899237,  0.11723676, -0.00583145,
       -0.04982071,  0.04778826, -0.11280042,  0.0237955 ,  0.08502073,
       -0.04627986, -0.0168891 , -0.06349624, -0.01229718, -0.02730742,
        0.14085445, -0.0117617 , -0.00330494, -0.06652286,  0.0688545 ,
        0.09140737,  0.06150964,  0.1517535 , -0.10411895,  0.29116744,
       -0.10556895, -0.12878124,  0.05843589,  0.13523191, -0.03235988,
       -0.05662379, -0.02573927,  0.11005671,  0.06786436, -0.08925769,
        0.10860933,  0.05802899, -0.10399682,  0.10902008,  0.11846616,
        0.02740206,  0.0593122 , -0.01810796, -0.04139902,  0.07716142,
       -0.03177017,  0.01237178, -0.21982144,  0.19788279, -0.06397597,
       -0.14181791,  0.00949997, -0.09941574, -0.09559454, -0.01750667,
        0.15215348,  0.11657657,  0.16803506, -0.04015172,  0.02486112], dtype=float32)

In [112]:
model.most_similar(['beer'])


Out[112]:
[('food', 0.9956748485565186),
 ('at-least', 0.9953977465629578),
 ('pittsburgh', 0.9950786828994751),
 ('not', 0.994979202747345),
 ('menu', 0.9948906898498535),
 ('dont', 0.9948253631591797),
 ('place', 0.9948084354400635),
 ('very', 0.9947399497032166),
 ('try', 0.9947223663330078),
 ('nice', 0.9946841597557068)]

In [ ]: