In [1]:
%% Initialization
clear ; close all; clc

In [2]:
fprintf('Finding closest centroids.\n\n');

% Load an example dataset that we will be using
load('./data/ex7data2.mat');

% Select an initial set of centroids
K = 3; % 3 Centroids
initial_centroids = [3 3; 6 2; 8 5];

% Find the closest centroids for the examples using the
% initial_centroids
idx = findClosestCentroids(X, initial_centroids);

fprintf('Closest centroids for the first 3 examples: \n')
fprintf(' %d', idx(1:3));


Finding closest centroids.

Closest centroids for the first 3 examples: 
 1 3 2
 1 3 2

In [3]:
fprintf('\nComputing centroids means.\n\n');

%  Compute means based on the closest centroids found in the previous part.
centroids = computeCentroids(X, idx, K);

fprintf('Centroids computed after initial finding of closest centroids: \n')
fprintf(' %f %f \n' , centroids');


Computing centroids means.

Centroids computed after initial finding of closest centroids: 
 2.428301 3.157924 
 5.813503 2.633656 
 7.119387 3.616684 

In [4]:
fprintf('\nRunning K-Means clustering on example dataset.\n\n');

% Load an example dataset
load('./data/ex7data2.mat');

% Settings for running K-Means
K = 3;
max_iters = 10;

% For consistency, here we set centroids to specific values
% but in practice you want to generate them automatically, such as by
% settings them to be random examples (as can be seen in
% kMeansInitCentroids).
initial_centroids = [3 3; 6 2; 8 5];

% Run K-Means algorithm. The 'true' at the end tells our function to plot
% the progress of K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters, true);
fprintf('\nK-Means Done.\n\n');


Running K-Means clustering on example dataset.

K-Means iteration 1/10...
K-Means iteration 2/10...
K-Means iteration 3/10...
K-Means iteration 4/10...
K-Means iteration 5/10...
K-Means iteration 6/10...
K-Means iteration 7/10...
K-Means iteration 8/10...
K-Means iteration 9/10...
K-Means iteration 10/10...

K-Means Done.

Gnuplot Produced by GNUPLOT 5.0 patchlevel 5 0 1 2 3 4 5 6 -2 0 2 4 6 8 10 Iteration number 10 gnuplot_plot_1a gnuplot_plot_2a gnuplot_plot_3a gnuplot_plot_4a gnuplot_plot_5a gnuplot_plot_6a gnuplot_plot_7a gnuplot_plot_8a gnuplot_plot_9a gnuplot_plot_10a gnuplot_plot_11a gnuplot_plot_12a gnuplot_plot_13a gnuplot_plot_14a gnuplot_plot_15a gnuplot_plot_16a gnuplot_plot_17a gnuplot_plot_18a gnuplot_plot_19a gnuplot_plot_20a gnuplot_plot_21a gnuplot_plot_22a gnuplot_plot_23a gnuplot_plot_24a gnuplot_plot_25a gnuplot_plot_26a gnuplot_plot_27a gnuplot_plot_28a gnuplot_plot_29a gnuplot_plot_30a gnuplot_plot_31a gnuplot_plot_32a gnuplot_plot_33a gnuplot_plot_34a gnuplot_plot_35a gnuplot_plot_36a gnuplot_plot_37a gnuplot_plot_38a gnuplot_plot_39a gnuplot_plot_40a gnuplot_plot_41a gnuplot_plot_42a gnuplot_plot_43a gnuplot_plot_44a gnuplot_plot_45a gnuplot_plot_46a gnuplot_plot_47a gnuplot_plot_48a gnuplot_plot_49a gnuplot_plot_50a gnuplot_plot_51a gnuplot_plot_52a gnuplot_plot_53a gnuplot_plot_54a gnuplot_plot_55a gnuplot_plot_56a gnuplot_plot_57a gnuplot_plot_58a gnuplot_plot_59a gnuplot_plot_60a gnuplot_plot_61a gnuplot_plot_62a gnuplot_plot_63a gnuplot_plot_64a gnuplot_plot_65a gnuplot_plot_66a gnuplot_plot_67a gnuplot_plot_68a gnuplot_plot_69a gnuplot_plot_70a

In [6]:
fprintf('\nRunning K-Means clustering on pixels from an image.\n\n');

%  Load an image of a bird
A = double(imread('./data/bird_small.png'));

% If imread does not work for you, you can try instead
%   load ('bird_small.mat');

A = A / 255; % Divide by 255 so that all values are in the range 0 - 1

% Size of the image
img_size = size(A);

% Reshape the image into an Nx3 matrix where N = number of pixels.
% Each row will contain the Red, Green and Blue pixel values
% This gives us our dataset matrix X that we will use K-Means on.
X = reshape(A, img_size(1) * img_size(2), 3);

% Run your K-Means algorithm on this data
% You should try different values of K and max_iters here
K = 16;
max_iters = 10;

% When using K-Means, it is important the initialize the centroids
% randomly.
% You should complete the code in kMeansInitCentroids.m before proceeding
initial_centroids = kMeansInitCentroids(X, K);

% Run K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters);


Running K-Means clustering on pixels from an image.

K-Means iteration 1/10...
K-Means iteration 2/10...
K-Means iteration 3/10...
K-Means iteration 4/10...
K-Means iteration 5/10...
K-Means iteration 6/10...
K-Means iteration 7/10...
K-Means iteration 8/10...
K-Means iteration 9/10...
K-Means iteration 10/10...

In [7]:
fprintf('\nApplying K-Means to compress an image.\n\n');

% Find closest cluster members
idx = findClosestCentroids(X, centroids);

% Essentially, now we have represented the image X as in terms of the
% indices in idx.

% We can now recover the image from the indices (idx) by mapping each pixel
% (specified by its index in idx) to the centroid value
X_recovered = centroids(idx,:);

% Reshape the recovered image into proper dimensions
X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);

% Display the original image
subplot(1, 2, 1);
imagesc(A);
title('Original');

% Display compressed image side by side
subplot(1, 2, 2);
imagesc(X_recovered)
title(sprintf('Compressed, with %d colors.', K));


Applying K-Means to compress an image.

Gnuplot Produced by GNUPLOT 5.0 patchlevel 5 Original gnuplot_plot_1a ; 20 40 60 80 100 120 20 40 60 80 100 120 Compressed, with 16 colors. gnuplot_plot_1b ; 20 40 60 80 100 120 20 40 60 80 100 120

In [ ]: