In [14]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:
tdata: an array of time valuesydata: an array of y valuesdy: the absolute uncertainties (standard deviations) in yYour job is to fit the following model to this data:
$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.
In [15]:
# YOUR CODE HERE
data = np.load('decay_osc.npz')
tdata = data['tdata']
ydata = data['ydata']
dy = data['dy']
data.close
Out[15]:
In [46]:
plt.figure(figsize=(7,5))
plt.errorbar(tdata, ydata, dy, fmt='og', ecolor='gray')
plt.xlabel('t')
plt.ylabel('y')
plt.grid();
In [ ]:
assert True # leave this to grade the data import and raw data plot
Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:
curve_fit to get a good fit.absolute_sigma=True.
In [33]:
# YOUR CODE HERE
def model(t, a, lamb, omega, delta):
y = a * np.exp(-lamb * t)*np.cos(omega*t) + delta
return y
theta_best, theta_cov = opt.curve_fit(model, tdata, ydata, absolute_sigma=True)
In [40]:
print('a = {0:.3f} +/- {1:.3f}'.format(theta_best[0], np.sqrt(theta_cov[0,0])))
print('lambda = {0:.3f} +/- {1:.3f}'.format(theta_best[1], np.sqrt(theta_cov[1,1])))
print('omega = {0:.3f} +/- {1:.3f}'.format(theta_best[2], np.sqrt(theta_cov[0,0])))
print('delta = {0:.3f} +/- {1:.3f}'.format(theta_best[3], np.sqrt(theta_cov[1,1])))
In [45]:
xfit = np.linspace(0,20)
yfit = model(xfit, theta_best[0], theta_best[1], theta_best[2], theta_best[3])
plt.figure(figsize=(7,5))
plt.plot(xfit, yfit)
plt.errorbar(tdata, ydata, dy, fmt='og', ecolor='gray')
plt.xlabel('t')
plt.ylabel('y')
plt.grid();
In [ ]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors