In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
sns.set_style('white')
In [2]:
from scipy.interpolate import griddata
In this example the values of a scalar field $f(x,y)$ are known at a very limited set of points in a square domain:
Create arrays x, y, f:
x should be a 1d array of the x coordinates on the boundary and the 1 interior point.y should be a 1d array of the y coordinates on the boundary and the 1 interior point.f should be a 1d array of the values of f at the corresponding x and y coordinates.You might find that np.hstack is helpful.
In [3]:
# YOUR CODE HERE
x1 = np.arange(-5, 6)
y1 = 5*np.ones(11)
f1 = np.zeros(11)
x2 = np.arange(-5, 6)
y2 = -5*np.ones(11)
f2 = np.zeros(11)
y3 = np.arange(-4, 5)
x3 = 5*np.ones(9)
f3 = np.zeros(9)
y4 = np.arange(-4, 5)
x4 = -5*np.ones(9)
f4 = np.zeros(9)
y5 = np.array([0])
x5 = np.array([0])
f5 = np.array([1])
x = np.hstack((x1, x2, x3, x4, x5))
y = np.hstack((y1, y2, y3, y4, y5))
f = np.hstack((f1, f2, f3, f4, f5))
print(x)
The following plot should show the points on the boundary and the single point in the interior:
In [4]:
plt.scatter(x, y);
plt.grid(True)
In [5]:
assert x.shape==(41,)
assert y.shape==(41,)
assert f.shape==(41,)
assert np.count_nonzero(f)==1
Use meshgrid and griddata to interpolate the function $f(x,y)$ on the entire square domain:
xnew and ynew should be 1d arrays with 100 points between $[-5,5]$.Xnew and Ynew should be 2d versions of xnew and ynew created by meshgrid.Fnew should be a 2d array with the interpolated values of $f(x,y)$ at the points (Xnew,Ynew).
In [12]:
# YOUR CODE HERE
xnew = np.linspace(-5.0, 6.0, 100)
ynew = np.linspace(-5, 6, 100)
Xnew, Ynew = np.meshgrid(xnew, ynew)
Fnew = griddata((x,y), f, (Xnew, Ynew), method='cubic', fill_value=0.0)
In [9]:
assert xnew.shape==(100,)
assert ynew.shape==(100,)
assert Xnew.shape==(100,100)
assert Ynew.shape==(100,100)
assert Fnew.shape==(100,100)
Plot the values of the interpolated scalar field using a contour plot. Customize your plot to make it effective and beautiful.
In [10]:
# YOUR CODE HERE
plt.figure(figsize=(8, 6))
plt.contourf(Fnew, cmap='cubehelix_r')
plt.title('2D Interpolation of a square')
Out[10]:
In [11]:
assert True # leave this to grade the plot
In [ ]: