$$\left\{ \begin{array}{lcc} \dot{x}_{1}=-x_{1}^3 + u\\ \\ \dot{x}_{2}=x_{1} \end{array} \right.$$


In [1]:
import sympy as sym

In [2]:
#Con esto las salidas van a ser en LaTeX
sym.init_printing(use_latex=True)

In [3]:
x_1, x_2 ,theta = sym.symbols('x_1 x_2 theta')

In [12]:
X = sym.Matrix([x_1, x_2])
X


Out[12]:
$$\left[\begin{matrix}x_{1}\\x_{2}\end{matrix}\right]$$

In [13]:
f_1 = -x_1**3 - x_2

In [14]:
f_2 = x_1

In [15]:
F = sym.Matrix([f_1,f_2])
F


Out[15]:
$$\left[\begin{matrix}- x_{1}^{3} - x_{2}\\x_{1}\end{matrix}\right]$$

In [20]:
# puntos de equilibrio del sistema
pes = sym.solve([f_1,f_2])
pes


Out[20]:
$$\left [ \left \{ x_{1} : 0, \quad x_{2} : 0\right \}\right ]$$

In [21]:
A = F.jacobian(X)
A


Out[21]:
$$\left[\begin{matrix}- 3 x_{1}^{2} & -1\\1 & 0\end{matrix}\right]$$

In [22]:
A_1 = A.subs({x_1:0,x_2:0})
A_1


Out[22]:
$$\left[\begin{matrix}0 & -1\\1 & 0\end{matrix}\right]$$

In [23]:
A_1.eigenvals()


Out[23]:
$$\left \{ - i : 1, \quad i : 1\right \}$$

In [ ]: