$$\left\{ \begin{array}{lcc} \dot{x}_{1}=2x_{2}+x_{1}(x_{1}^{2}+2x_{2}^{4}) \\ \\ \dot{x}_{2}=-2x_{1}+x_{2}(x_{1}^{2}+x_{2}^{4}) \end{array} \right.$$


In [2]:
import sympy as sym

In [3]:
#Con esto las salidas van a ser en LaTeX
sym.init_printing(use_latex=True)

In [4]:
x_1, x_2 ,theta = sym.symbols('x_1 x_2 theta')

In [5]:
X = sym.Matrix([x_1, x_2])
X


Out[5]:
$$\left[\begin{matrix}x_{1}\\x_{2}\end{matrix}\right]$$

In [6]:
f_1 = 2*x_2 + x_1*(x_1**2 + 2*x_2**4)
f_1


Out[6]:
$$x_{1} \left(x_{1}^{2} + 2 x_{2}^{4}\right) + 2 x_{2}$$

In [7]:
f_2 = -2*x_1 + x_2*(x_1**2 + x_2**4)
f_2


Out[7]:
$$- 2 x_{1} + x_{2} \left(x_{1}^{2} + x_{2}^{4}\right)$$

In [8]:
F = sym.Matrix([f_1,f_2])
F


Out[8]:
$$\left[\begin{matrix}x_{1} \left(x_{1}^{2} + 2 x_{2}^{4}\right) + 2 x_{2}\\- 2 x_{1} + x_{2} \left(x_{1}^{2} + x_{2}^{4}\right)\end{matrix}\right]$$

In [9]:
# puntos de equilibrio del sistema
pes = sym.solve([f_1,f_2])
pes


Out[9]:
$$\left [ \left \{ x_{1} : 0, \quad x_{2} : 0\right \}\right ]$$

In [10]:
A = F.jacobian(X)
A


Out[10]:
$$\left[\begin{matrix}3 x_{1}^{2} + 2 x_{2}^{4} & 8 x_{1} x_{2}^{3} + 2\\2 x_{1} x_{2} - 2 & x_{1}^{2} + 5 x_{2}^{4}\end{matrix}\right]$$

In [11]:
sym.latex(A)


Out[11]:
'\\left[\\begin{matrix}3 x_{1}^{2} + 2 x_{2}^{4} & 8 x_{1} x_{2}^{3} + 2\\\\2 x_{1} x_{2} - 2 & x_{1}^{2} + 5 x_{2}^{4}\\end{matrix}\\right]'

In [12]:
A_1 = A.subs({x_1:0,x_2:0})
A_1


Out[12]:
$$\left[\begin{matrix}0 & 2\\-2 & 0\end{matrix}\right]$$

In [13]:
A_1.eigenvals()


Out[13]:
$$\left \{ - 2 i : 1, \quad 2 i : 1\right \}$$

In [16]:
expr = 2*x_1 *F[0] + 2*x_2*F[1]
expr = expr.simplify()

In [17]:
sym.latex(expr)


Out[17]:
'2 x_{1}^{4} + 4 x_{1}^{2} x_{2}^{4} + 2 x_{1}^{2} x_{2}^{2} + 2 x_{2}^{6}'

In [18]:
expr


Out[18]:
$$2 x_{1}^{4} + 4 x_{1}^{2} x_{2}^{4} + 2 x_{1}^{2} x_{2}^{2} + 2 x_{2}^{6}$$

In [ ]: