$$\left\{ \begin{array}{lcc} \dot{x}_{1}=2x_{2}+x_{1}(x_{1}^{2}+2x_{2}^{4}) \\ \\ \dot{x}_{2}=-2x_{1}+x_{2}(x_{1}^{2}+x_{2}^{4}) \end{array} \right.$$
In [2]:
import sympy as sym
In [3]:
#Con esto las salidas van a ser en LaTeX
sym.init_printing(use_latex=True)
In [4]:
x_1, x_2 ,theta = sym.symbols('x_1 x_2 theta')
In [5]:
X = sym.Matrix([x_1, x_2])
X
Out[5]:
In [6]:
f_1 = 2*x_2 + x_1*(x_1**2 + 2*x_2**4)
f_1
Out[6]:
In [7]:
f_2 = -2*x_1 + x_2*(x_1**2 + x_2**4)
f_2
Out[7]:
In [8]:
F = sym.Matrix([f_1,f_2])
F
Out[8]:
In [9]:
# puntos de equilibrio del sistema
pes = sym.solve([f_1,f_2])
pes
Out[9]:
In [10]:
A = F.jacobian(X)
A
Out[10]:
In [11]:
sym.latex(A)
Out[11]:
In [12]:
A_1 = A.subs({x_1:0,x_2:0})
A_1
Out[12]:
In [13]:
A_1.eigenvals()
Out[13]:
In [16]:
expr = 2*x_1 *F[0] + 2*x_2*F[1]
expr = expr.simplify()
In [17]:
sym.latex(expr)
Out[17]:
In [18]:
expr
Out[18]:
In [ ]: