Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
#data_dir = './data'
data_dir = '/input'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f9169684f98>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f9169583978>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='inputs_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='inputs_z')
    learning_rate = tf.placeholder(tf.float32, None, name='learning_rate')

    return inputs_real, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [6]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    k_init = tf.contrib.layers.xavier_initializer()
    #k_init = tf.random_normal_initializer(stddev=0.02)
    
    alpha=0.2
    with tf.variable_scope('discriminator', reuse=reuse):
        #images shape is 28x28x3
        x1 = tf.layers.conv2d(images, 64, 4, strides=2, padding="same", kernel_initializer=k_init)
        bn1 = tf.layers.batch_normalization(x1, training=True)
        relu1 = tf.maximum(alpha * bn1, bn1)
        #print('Relu1 shape is ', relu1.shape)
        
        #relu1 shape is 14x14x64
        x2 = tf.layers.conv2d(relu1, 128, 4, strides=2, padding="same", kernel_initializer=k_init)
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        #print('Relu2 shape is ', relu2.shape)

        #7x7x128
        x3 = tf.layers.conv2d(relu2, 256, 4, strides=2, padding="same", kernel_initializer=k_init)
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        #print('Relu3 shape is ', relu3.shape)
        
        #relu3 is 4x4x256
        #flatten
        flat = tf.reshape(relu3, (-1, 4*4*256))
        logits = tf.layers.dense(flat, 1)
        output = tf.sigmoid(logits)

    return output, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [7]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    k_init = tf.contrib.layers.xavier_initializer()
    #k_init = tf.random_normal_initializer(stddev=0.02)
    
    reuse = not is_train
    alpha=0.2
    with tf.variable_scope('generator', reuse=reuse):
        #First Fully connected layer
        x = tf.layers.dense(z, 4*4*512)
        #print('x shape is ',x.shape)
        
        #reshape
        x1 = tf.reshape(x, (-1,4,4,512))
        bn1 = tf.layers.batch_normalization(x1,training=is_train)
        relu1 = tf.maximum(alpha * bn1, bn1)
        #print('relu1 shape is',relu1.shape)
        
        x2 = tf.layers.conv2d_transpose(relu1, 256, 4, strides=1, padding="valid", kernel_initializer=k_init)
        bn2 = tf.layers.batch_normalization(x2,training=is_train)
        relu2 = tf.maximum(alpha * bn2, bn2)
        #print('relu2 shape is',relu2.shape)
        
        x3 = tf.layers.conv2d_transpose(relu2, 128, 4, strides=2, padding="same", kernel_initializer=k_init)
        bn3 = tf.layers.batch_normalization(x3,training=is_train)
        relu3 = tf.maximum(alpha * bn3, bn3)
        #print('relu3 shape is',relu3.shape)
        
        #x4 = tf.layers.conv2d_transpose(relu3, 32, 2, strides=1, padding="same", kernel_initializer=k_init)
        #bn4 = tf.layers.batch_normalization(x4,training=is_train)
        #relu4 = tf.maximum(alpha * bn4, bn4)
        #print('relu4 shape is',relu4.shape)
        
        #Output layer: logits & tanh activated output
        logits = tf.layers.conv2d_transpose(relu3, out_channel_dim, 4, strides=2, padding="same", kernel_initializer=k_init)
        #print('logits shape is',logits.shape)
        
        output = tf.tanh(logits)
        
    
    return output


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    smooth = 0.1
    g_model = generator(input_z, out_channel_dim, is_train=True) #fake
    d_model_real, d_logits_real = discriminator(input_real, reuse=False)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    #print(input_real)
    #print(input_z)
    #print(d_logits_real.shape)
    #print(d_logits_fake)
    real_labels = tf.ones_like(d_model_real) * (1 - smooth)
    
    # Calculate losses
    g_loss = tf.reduce_mean(
                 tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                         labels=tf.ones_like(d_model_fake)))
                                                         #labels=tf.ones_like(d_logits_fake)))
    
    d_loss_real = tf.reduce_mean(
                      tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, 
                                                              labels= real_labels))
                                                              #labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
                      tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                              labels=tf.zeros_like(d_model_fake)))
                                                              #labels=tf.zeros_like(d_logits_fake)))
    d_loss = d_loss_real + d_loss_fake


    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    all_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    g_update_ops = [var for var in all_update_ops if var.name.startswith('generator')]
    d_update_ops = [var for var in all_update_ops if var.name.startswith('discriminator')]

    with tf.control_dependencies(g_update_ops):
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    with tf.control_dependencies(d_update_ops):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [11]:
import time
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    step = 0
    #inputs
    inputs_real, inputs_z, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    
    #loss
    #print('Data shape[3] is ',data_shape[3])
    d_loss, g_loss = model_loss(inputs_real, inputs_z, data_shape[3])
    
    #optimization
    d_train_opt, g_train_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                
                start_time = time.time()
                step += 1
                batch_images = batch_images * 2
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                #print('batch_z shape=', batch_z.shape)
                # Run optimizers
                _ = sess.run(d_train_opt, feed_dict={inputs_real: batch_images, inputs_z: batch_z, lr:learning_rate})
                _ = sess.run(g_train_opt, feed_dict={inputs_z: batch_z, lr:learning_rate})
                
                if step % 80 == 0:
                    train_loss_d = d_loss.eval({inputs_z:batch_z, inputs_real: batch_images})
                    train_loss_g = g_loss.eval({inputs_z:batch_z})
                    print("Epoch {}/{} Step {}...".format(epoch_i+1, epoch_count, step),
                      "Discriminator Loss: {:.4f}...".format(train_loss_d),
                      "Generator Loss: {:.4f}".format(train_loss_g),
                      "... Time spent={:.4f}".format(time.time() - start_time))    

                if step % 200 == 0:
                    show_generator_output(sess, 25, inputs_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [22]:
batch_size = 64
z_dim = 100
learning_rate = 0.0001
beta1 = 0.2


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2 Step 80... Discriminator Loss: 0.7956... Generator Loss: 2.0772 ... Time spent=0.2436
Epoch 1/2 Step 160... Discriminator Loss: 1.1368... Generator Loss: 1.6757 ... Time spent=0.1569
Epoch 1/2 Step 240... Discriminator Loss: 1.1871... Generator Loss: 1.9455 ... Time spent=0.1600
Epoch 1/2 Step 320... Discriminator Loss: 1.0228... Generator Loss: 0.8237 ... Time spent=0.1563
Epoch 1/2 Step 400... Discriminator Loss: 0.9050... Generator Loss: 1.3220 ... Time spent=0.1584
Epoch 1/2 Step 480... Discriminator Loss: 0.9511... Generator Loss: 0.8995 ... Time spent=0.1555
Epoch 1/2 Step 560... Discriminator Loss: 0.9229... Generator Loss: 0.9401 ... Time spent=0.1569
Epoch 1/2 Step 640... Discriminator Loss: 0.8822... Generator Loss: 1.7740 ... Time spent=0.1561
Epoch 1/2 Step 720... Discriminator Loss: 1.0354... Generator Loss: 0.8025 ... Time spent=0.1589
Epoch 1/2 Step 800... Discriminator Loss: 1.1678... Generator Loss: 0.6308 ... Time spent=0.1589
Epoch 1/2 Step 880... Discriminator Loss: 0.9420... Generator Loss: 1.2580 ... Time spent=0.1577
Epoch 2/2 Step 960... Discriminator Loss: 1.1837... Generator Loss: 2.2250 ... Time spent=0.1581
Epoch 2/2 Step 1040... Discriminator Loss: 1.4218... Generator Loss: 0.4618 ... Time spent=0.1559
Epoch 2/2 Step 1120... Discriminator Loss: 0.9566... Generator Loss: 2.0289 ... Time spent=0.1551
Epoch 2/2 Step 1200... Discriminator Loss: 0.9285... Generator Loss: 1.8150 ... Time spent=0.1602
Epoch 2/2 Step 1280... Discriminator Loss: 0.8904... Generator Loss: 1.6215 ... Time spent=0.1600
Epoch 2/2 Step 1360... Discriminator Loss: 0.8815... Generator Loss: 1.1067 ... Time spent=0.1554
Epoch 2/2 Step 1440... Discriminator Loss: 1.5954... Generator Loss: 0.4167 ... Time spent=0.1583
Epoch 2/2 Step 1520... Discriminator Loss: 1.3095... Generator Loss: 0.5476 ... Time spent=0.1597
Epoch 2/2 Step 1600... Discriminator Loss: 0.9227... Generator Loss: 0.9665 ... Time spent=0.1473
Epoch 2/2 Step 1680... Discriminator Loss: 1.3003... Generator Loss: 2.8882 ... Time spent=0.1645
Epoch 2/2 Step 1760... Discriminator Loss: 0.9264... Generator Loss: 1.0417 ... Time spent=0.1663
Epoch 2/2 Step 1840... Discriminator Loss: 0.8929... Generator Loss: 1.0097 ... Time spent=0.1594

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [ ]:
batch_size = 64
z_dim = 100
learning_rate = 0.001
beta1 = 0.5

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 3

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/3 Step 80... Discriminator Loss: 0.5233... Generator Loss: 3.1953 ... Time spent=0.2428
Epoch 1/3 Step 160... Discriminator Loss: 1.2420... Generator Loss: 0.7463 ... Time spent=0.1582
Epoch 1/3 Step 240... Discriminator Loss: 1.1925... Generator Loss: 0.7677 ... Time spent=0.1585
Epoch 1/3 Step 320... Discriminator Loss: 1.1457... Generator Loss: 2.2823 ... Time spent=0.1589
Epoch 1/3 Step 400... Discriminator Loss: 1.2834... Generator Loss: 1.0701 ... Time spent=0.1570
Epoch 1/3 Step 480... Discriminator Loss: 0.8812... Generator Loss: 1.6742 ... Time spent=0.1468
Epoch 1/3 Step 560... Discriminator Loss: 1.1063... Generator Loss: 1.4188 ... Time spent=0.1594
Epoch 1/3 Step 640... Discriminator Loss: 1.1608... Generator Loss: 1.1956 ... Time spent=0.1569
Epoch 1/3 Step 720... Discriminator Loss: 1.1608... Generator Loss: 0.8034 ... Time spent=0.1583
Epoch 1/3 Step 800... Discriminator Loss: 1.3169... Generator Loss: 0.7392 ... Time spent=0.1593
Epoch 1/3 Step 880... Discriminator Loss: 1.2513... Generator Loss: 1.3089 ... Time spent=0.1596
Epoch 1/3 Step 960... Discriminator Loss: 1.1684... Generator Loss: 1.3397 ... Time spent=0.1587
Epoch 1/3 Step 1040... Discriminator Loss: 1.2859... Generator Loss: 0.6618 ... Time spent=0.1736
Epoch 1/3 Step 1120... Discriminator Loss: 1.0776... Generator Loss: 0.9345 ... Time spent=0.1684
Epoch 1/3 Step 1200... Discriminator Loss: 1.3046... Generator Loss: 0.6545 ... Time spent=0.1578
Epoch 1/3 Step 1280... Discriminator Loss: 1.1746... Generator Loss: 0.8937 ... Time spent=0.1585
Epoch 1/3 Step 1360... Discriminator Loss: 1.5399... Generator Loss: 0.4727 ... Time spent=0.1571
Epoch 1/3 Step 1440... Discriminator Loss: 1.4094... Generator Loss: 1.3233 ... Time spent=0.1585
Epoch 1/3 Step 1520... Discriminator Loss: 1.1418... Generator Loss: 0.9207 ... Time spent=0.1590
Epoch 1/3 Step 1600... Discriminator Loss: 1.2867... Generator Loss: 1.1762 ... Time spent=0.1603
Epoch 1/3 Step 1680... Discriminator Loss: 1.0306... Generator Loss: 1.5252 ... Time spent=0.1685
Epoch 1/3 Step 1760... Discriminator Loss: 1.2526... Generator Loss: 1.1278 ... Time spent=0.1594
Epoch 1/3 Step 1840... Discriminator Loss: 1.0652... Generator Loss: 0.9833 ... Time spent=0.1576
Epoch 1/3 Step 1920... Discriminator Loss: 1.3747... Generator Loss: 0.9647 ... Time spent=0.1572
Epoch 1/3 Step 2000... Discriminator Loss: 1.3441... Generator Loss: 0.7993 ... Time spent=0.1589
Epoch 1/3 Step 2080... Discriminator Loss: 1.1860... Generator Loss: 1.1593 ... Time spent=0.1588
Epoch 1/3 Step 2160... Discriminator Loss: 1.2837... Generator Loss: 0.7074 ... Time spent=0.1557
Epoch 1/3 Step 2240... Discriminator Loss: 1.4641... Generator Loss: 1.2036 ... Time spent=0.1584
Epoch 1/3 Step 2320... Discriminator Loss: 1.0431... Generator Loss: 1.3780 ... Time spent=0.1587
Epoch 1/3 Step 2400... Discriminator Loss: 1.5580... Generator Loss: 0.4118 ... Time spent=0.1576
Epoch 1/3 Step 2480... Discriminator Loss: 1.1639... Generator Loss: 1.2618 ... Time spent=0.1818
Epoch 1/3 Step 2560... Discriminator Loss: 1.2787... Generator Loss: 0.7468 ... Time spent=0.1599
Epoch 1/3 Step 2640... Discriminator Loss: 1.1718... Generator Loss: 0.8915 ... Time spent=0.1592
Epoch 1/3 Step 2720... Discriminator Loss: 1.1961... Generator Loss: 0.7686 ... Time spent=0.1594
Epoch 1/3 Step 2800... Discriminator Loss: 1.1398... Generator Loss: 1.1753 ... Time spent=0.1577
Epoch 1/3 Step 2880... Discriminator Loss: 1.3421... Generator Loss: 0.5749 ... Time spent=0.1600
Epoch 1/3 Step 2960... Discriminator Loss: 1.3700... Generator Loss: 0.5498 ... Time spent=0.1555
Epoch 1/3 Step 3040... Discriminator Loss: 1.2693... Generator Loss: 0.6656 ... Time spent=0.1561
Epoch 1/3 Step 3120... Discriminator Loss: 1.1230... Generator Loss: 1.2056 ... Time spent=0.1579
Epoch 2/3 Step 3200... Discriminator Loss: 1.1400... Generator Loss: 0.8503 ... Time spent=0.1562
Epoch 2/3 Step 3280... Discriminator Loss: 1.1836... Generator Loss: 0.8120 ... Time spent=0.1460
Epoch 2/3 Step 3360... Discriminator Loss: 1.2231... Generator Loss: 0.8915 ... Time spent=0.1460
Epoch 2/3 Step 3440... Discriminator Loss: 1.2686... Generator Loss: 0.6708 ... Time spent=0.1497
Epoch 2/3 Step 3600... Discriminator Loss: 1.1344... Generator Loss: 0.9950 ... Time spent=0.1580
Epoch 2/3 Step 3680... Discriminator Loss: 1.2787... Generator Loss: 0.6879 ... Time spent=0.1460
Epoch 2/3 Step 3760... Discriminator Loss: 1.1336... Generator Loss: 0.7833 ... Time spent=0.1477
Epoch 2/3 Step 3840... Discriminator Loss: 1.2233... Generator Loss: 1.0575 ... Time spent=0.1465
Epoch 2/3 Step 3920... Discriminator Loss: 1.3609... Generator Loss: 0.6030 ... Time spent=0.1464
Epoch 2/3 Step 4000... Discriminator Loss: 1.3545... Generator Loss: 0.5431 ... Time spent=0.1564
Epoch 2/3 Step 4080... Discriminator Loss: 1.3498... Generator Loss: 1.4956 ... Time spent=0.1564
Epoch 2/3 Step 4160... Discriminator Loss: 1.4754... Generator Loss: 0.6088 ... Time spent=0.1595
Epoch 2/3 Step 4240... Discriminator Loss: 0.9874... Generator Loss: 1.2305 ... Time spent=0.1586
Epoch 2/3 Step 4320... Discriminator Loss: 1.0376... Generator Loss: 1.2231 ... Time spent=0.1591
Epoch 2/3 Step 4400... Discriminator Loss: 1.5630... Generator Loss: 1.4457 ... Time spent=0.1589
Epoch 2/3 Step 4480... Discriminator Loss: 1.3504... Generator Loss: 0.5458 ... Time spent=0.1474
Epoch 2/3 Step 4560... Discriminator Loss: 1.3634... Generator Loss: 0.6627 ... Time spent=0.1458
Epoch 2/3 Step 4640... Discriminator Loss: 0.9307... Generator Loss: 1.1868 ... Time spent=0.1471
Epoch 2/3 Step 4720... Discriminator Loss: 1.0266... Generator Loss: 1.2784 ... Time spent=0.1584
Epoch 2/3 Step 4800... Discriminator Loss: 1.0979... Generator Loss: 0.8744 ... Time spent=0.1582
Epoch 2/3 Step 4880... Discriminator Loss: 1.1650... Generator Loss: 1.4399 ... Time spent=0.1574
Epoch 2/3 Step 4960... Discriminator Loss: 1.1689... Generator Loss: 2.0954 ... Time spent=0.1578
Epoch 2/3 Step 5040... Discriminator Loss: 1.4203... Generator Loss: 0.5060 ... Time spent=0.1558
Epoch 2/3 Step 5120... Discriminator Loss: 1.1452... Generator Loss: 1.0483 ... Time spent=0.1453
Epoch 2/3 Step 5200... Discriminator Loss: 1.1235... Generator Loss: 0.7628 ... Time spent=0.1524

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.