In [25]:
import pandas as pd
import numpy as np
import pickle
import os
root_directory = 'D:/github/w_vattenstatus/ekostat_calculator'#"../" #os.getcwd()
workspace_directory = root_directory + '/workspaces' 
resource_directory = root_directory + '/resources'
#alias = 'lena'
user_id = 'test_user' #kanske ska vara off_line user?
workspace_alias = 'lena_indicator' # kustzonsmodellen_3daydata
# workspace_alias = 'kustzonsmodellen_3daydata'

# ## Initiate EventHandler
print(root_directory)
paths = {'user_id': user_id, 
         'workspace_directory': root_directory + '/workspaces', 
         'resource_directory': root_directory + '/resources', 
         'log_directory': 'D:/github' + '/log', 
         'test_data_directory': 'D:/github' + '/test_data',
         'cache_directory': 'D:/github/w_vattenstatus/cache'}


D:/github/w_vattenstatus/ekostat_calculator

In [27]:
file_path = workspace_directory + '/e86ae1c5-d241-46a4-9236-59524b44e500/input_data/exports/all_data_raw.pkl'
print(file_path)


D:/github/w_vattenstatus/ekostat_calculator/workspaces/e86ae1c5-d241-46a4-9236-59524b44e500/input_data/exports/all_data_raw.pkl

In [28]:
with open(file_path, "rb") as fid:
    df = pickle.load(fid)

In [29]:
df.head()


Out[29]:
AMON BIOV_CONC_ALL BQIm CPHL_BTL CPHL_INTEG DEPH DIN DOXY_BTL DOXY_CTD LATIT_DD ... TEMP_BTL TEMP_CTD VISS_EU_CD WADEP WATER_BODY_NAME WATER_DISTRICT WATER_TYPE_AREA WLTYP origin_dtype origin_file_path
0 NaN NaN NaN NaN 0.68 NaN NaN NaN NaN 58.80317 ... NaN NaN 584340-174401 41.5 Krabbfjärden Norra Östersjöns vattendistrikt 14 - Östergötlands yttre kustvatten 2 - Havsområde innanför 1 NM chlorophyll chlorophyll_sharkweb_data_chlorophyll_wb_2007-...
1 NaN NaN NaN NaN 0.6 NaN NaN NaN NaN 58.25987 ... NaN NaN 581700-113000 71 Gullmarn centralbassäng Västerhavets vattendistrikt 02 - Västkustens fjordar 2 - Havsområde innanför 1 NM chlorophyll chlorophyll_sharkweb_data_chlorophyll_wb_2007-...
2 NaN NaN NaN NaN 1.5 NaN NaN NaN NaN 56.37085 ... NaN NaN 561400-161201 20 S Kalmarsunds utsjövatten Södra Östersjöns vattendistrikt 09 - Blekinge skärgård och Kalmarsund. Yttre k... 2 - Havsområde innanför 1 NM chlorophyll chlorophyll_sharkweb_data_chlorophyll_wb_2007-...
3 NaN NaN NaN NaN 1.02 NaN NaN NaN NaN 65.72950 ... NaN NaN 654470-222700 13 Gussöfjärden Bottenvikens vattendistrikt 22 - Norra Bottenviken. Inre kustvatten 2 - Havsområde innanför 1 NM chlorophyll chlorophyll_sharkweb_data_chlorophyll_wb_2007-...
4 NaN NaN NaN NaN 1.02 NaN NaN NaN NaN 65.72950 ... NaN NaN 654470-222700 13 Gussöfjärden Bottenvikens vattendistrikt 22 - Norra Bottenviken. Inre kustvatten 2 - Havsområde innanför 1 NM chlorophyll chlorophyll_sharkweb_data_chlorophyll_wb_2007-...

5 rows × 59 columns


In [40]:
df.CPHL_INTEG.head()


Out[40]:
0    0.68
1     0.6
2     1.5
3    1.02
4    1.02
Name: CPHL_INTEG, dtype: object

In [136]:
df['DOXY'] = df['DOXY'].astype(float)

In [142]:
mind = df.loc[df['DOXY'] <= 0.5, 'DEPH'].min()
if np.isnan(mind):
    print('det är nan')


det är nan

In [16]:
p = paths['resource_directory']+'/default_workspaces/default_workspace/subsets/default_subset/step_2/settings/indicator_settings/'

In [70]:
indicators = ['indicator_din_winter.set',
'indicator_dip_winter.set',
'indicator_ntot_summer.set',
'indicator_ntot_winter.set',
'indicator_ptot_summer.set',
'indicator_ptot_winter.set']
setting_paths = {file: pd.read_csv(p+file, sep = '\t', encoding = 'cp1252') for file in os.listdir(p)}

In [90]:
d = {}
min_s = 2
for key in setting_paths:
    if 'ref_ref_value_limit_eq' not in setting_paths[key].columns:
            continue
    d[key] = {}
    for ix in setting_paths[key].index:
        eq = setting_paths[key].loc[ix, 'ref_ref_value_limit_eq']
        d[key][eq] = {}
        max_s = setting_paths[key].loc[ix, 'ref_Salinity_max_int']
        S = np.linspace(min_s,max_s, (max_s-min_s)*10+1)
        for s in S:
            d[key][eq].setdefault(str(s), eval(eq))

In [96]:
d['indicator_ptot_winter.set']['-0.107*s+1.04'].keys()


Out[96]:
dict_keys(['2.0', '2.1', '2.2', '2.3', '2.4', '2.5', '2.6', '2.7', '2.8', '2.9', '3.0', '3.1', '3.2', '3.3', '3.4', '3.5', '3.6', '3.7', '3.8', '3.9', '4.0', '4.1', '4.2', '4.3', '4.4', '4.5', '4.6', '4.7', '4.8', '4.9', '5.0', '5.1', '5.2', '5.3', '5.4', '5.5', '5.6', '5.7', '5.8', '5.9', '6.0'])

In [77]:
d['indicator_secchi.set']['1023.3*((15+( (34-15)  * ((6-s) /6) ))**-1.696)'][5]


Out[77]:
7.4863849412192316

In [55]:
for file in os.listdir(p):
    pd.read_csv(p+file, sep = '\t', encoding = 'cp1252')

In [78]:
d.keys()


Out[78]:
dict_keys(['indicator_biov.set', 'indicator_chl.set', 'indicator_din_winter.set', 'indicator_dip_winter.set', 'indicator_ntot_summer.set', 'indicator_ntot_winter.set', 'indicator_ptot_summer.set', 'indicator_ptot_winter.set', 'indicator_secchi.set'])

In [52]:



Out[52]:
'indicator_oxygen.set'

In [93]:
file_path = paths['resource_directory']+'/default_workspaces/default_workspace/subsets/default_subset/step_2/settings/indicator_settings/evaluated_refeq.pkl'
with open(file_path, "wb") as fid:
    pickle.dump(d, fid)

In [101]:
for dec in [ 1.0        ,  1.33333333,  1.66666667,  2.65        ,  2.33333333,
         2.66666667,  3.0        ,  3.33333333,  3.66666667,  4.85        ,
         4.33333333,  4.66666667,  5.0        ]:
    print(str(dec)[0:3])


1.0
1.3
1.6
2.6
2.3
2.6
3.0
3.3
3.6
4.8
4.3
4.6
5.0

In [98]:
[np.linspace(1,5,13)]


Out[98]:
[array([ 1.        ,  1.33333333,  1.66666667,  2.        ,  2.33333333,
         2.66666667,  3.        ,  3.33333333,  3.66666667,  4.        ,
         4.33333333,  4.66666667,  5.        ])]

In [107]:



Out[107]:
array([ 6.6010603 ,  3.24496   ,  3.41383584,  2.21988369,  4.10806689,
        4.43343673,  4.38326748,  5.57009553,  4.62956377,  2.74367025,
        3.12286204,  5.52893687,  2.08994427,  4.28758053,  3.90591736,
        3.20396791,  2.01626012,  2.80853732,  3.89133465,  3.63974187,
        5.98929232,  5.13579287,  2.58902642,  2.79499868,  2.79088486,
        4.0920386 ,  6.36833578,  4.24958578,  4.54489204,  2.50708856,
        5.77483327,  5.7798803 ,  3.22471022,  5.82551547,  3.97466646,
        6.16708314,  2.35349421,  6.60919869,  3.22394766,  5.62804223,
        3.4108617 ,  4.19050055,  4.82976794,  6.99369245,  2.81805842,
        6.41730364,  6.35202057,  3.96031299,  3.17504189,  2.28642792,
        5.64165174,  4.20360586,  3.18978084,  3.34043285,  6.31128279,
        6.33941815,  3.71984367,  3.76234437,  2.45064058,  3.66153514,
        2.64817181,  3.41873853,  4.17839438,  6.34695536,  4.66008212,
        2.25223142,  5.53068733,  6.46516299,  2.40641837,  5.68709984,
        3.70553171,  5.70959796,  6.29950544,  3.02539811,  5.2578197 ,
        3.42970664,  4.51891999,  6.36599526,  5.14415588,  2.36166991,
        6.45910865,  6.3535847 ,  6.87499212,  5.06662971,  3.2860947 ,
        3.85394064,  5.97242885,  4.15242211,  6.44566409,  5.46008555,
        5.2096964 ,  5.77535915,  5.36647585,  6.3677222 ,  4.82677047,
        6.96183236,  5.80617276,  3.61836768,  5.9585569 ,  2.45443207,
        4.5761112 ,  4.48285007,  2.09822133,  2.18489849,  3.77453837,
        5.35625945,  5.6321461 ,  6.69700334,  6.45532106,  6.77617823,
        6.88021196,  6.2169619 ,  3.99762575,  3.00747163,  3.89225719,
        5.66934578,  3.57854487,  5.94665458,  4.72678766,  2.62478592,
        4.92804088,  2.89553663,  6.79764873,  6.07213323,  5.18654021,
        5.76269813,  6.887896  ,  6.93768845,  2.59644017,  6.45094422,
        5.9648806 ,  2.53556546,  6.48950503,  3.09153383,  6.7708668 ,
        3.71063863,  5.3311976 ,  4.16875732,  3.08503216,  3.66050458,
        4.84205032,  5.54160895,  6.4740455 ,  6.83211582,  2.51838987,
        5.30671063,  3.51119121,  6.99383454,  6.78002364,  5.72286752,
        4.63708464,  4.22489422,  6.00786539,  6.9229469 ,  5.95982355,
        2.42456686,  6.2406571 ,  6.64500182,  4.42666297,  6.39578781,
        5.97849555,  4.9375233 ,  6.54136349,  5.05557131,  4.54057935,
        2.24422601,  3.91347613,  4.89411538,  5.46139666,  6.54090655,
        4.45604927,  4.64194392,  5.41017485,  2.78513159,  4.17711328,
        6.40214575,  6.11012662,  3.18736717,  4.93819243,  3.82017568,
        6.01123126,  2.9813821 ,  5.44454487,  4.50781006,  3.84266977,
        6.49932456,  6.85802411,  2.06069112,  3.7439218 ,  3.54717379,
        3.06455159,  5.7540167 ,  3.1233239 ,  6.38119082,  3.66922314,
        4.38421895,  3.54018639,  6.0492097 ,  6.78006498,  2.69710159,
        5.01606079,  2.84018528,  3.20192121,  3.29217164,  2.72331782,
        2.38172748,  5.02599888,  6.08729345,  2.68331596,  6.12764649,
        5.38177388,  3.84795041,  4.60307856,  2.30148117,  5.40147976,
        6.47835571,  5.30719597,  6.08972029,  5.2815531 ,  4.07593114,
        4.95874283,  5.47375333,  6.41458379,  2.68479132,  6.5142995 ,
        5.29251744,  2.67981867,  6.49248486,  2.31839131,  4.64040294,
        4.0898884 ,  6.24303411,  6.50215969,  6.02613714,  5.41397932,
        2.61582313,  3.46279092,  5.8991565 ,  4.90534901,  6.92466457,
        6.52777612,  3.26519221,  2.41678343,  2.36274684,  3.55931512,
        4.88307122,  6.25161128,  4.40151633,  6.75101109,  3.49779287,
        4.4474702 ,  5.57930554,  4.17460041,  4.60884254,  4.91154303,
        6.45082427,  2.55911497,  3.61922495,  3.2982324 ,  5.83870869,
        5.10074813,  3.78189087,  5.71416616,  2.31933742,  2.34549337,
        2.13946563,  2.29600362,  5.6300123 ,  4.1054376 ,  6.04613306,
        2.51446186,  3.75626966,  4.29040338,  6.1040771 ,  6.81144492,
        5.03849896,  6.91040026,  6.44631074,  5.10498807,  4.37201194,
        3.02037423,  2.73334041,  3.29234755,  3.14064254,  6.60511684,
        4.64340523,  6.82834399,  5.64546229,  3.71653082,  2.76096645,
        3.46095977,  5.14142206,  3.8618567 ,  3.94164855,  5.96739354,
        3.07559819,  3.84507712,  6.89649528,  6.57040703,  5.95982814,
        5.88871262,  2.62418352,  3.14876336,  5.10790271,  6.03964115,
        5.80175079,  5.68282394,  5.22034721,  3.63202356,  6.51251972,
        2.41760084,  3.90748459,  6.59832057,  3.0032561 ,  3.84693984,
        3.72250226,  2.21162316,  2.77378063,  3.50747996,  5.47549038,
        3.99191608,  6.3669983 ,  3.87612272,  2.12181812,  4.99813661,
        3.82065213,  2.79206899,  5.01440588,  2.43581059,  5.60632851,
        5.82116555,  5.26490228,  6.85498212,  2.20394208,  6.55087959,
        3.27985762,  4.3039096 ,  2.94285723,  3.8375168 ,  2.40251824,
        6.92049493,  3.37146438,  2.80795108,  4.47878843,  2.94090468,
        2.16035933,  5.1053939 ,  6.87169481,  6.484998  ,  3.42547111,
        4.36422954,  5.00895677,  2.62709025,  2.47151325,  3.61602757,
        2.70687504,  2.55552865,  4.39114909,  5.33244478,  4.70398568,
        4.89385047,  2.52563926,  2.50178359,  6.08194531,  5.72072472,
        3.16915466,  2.81070077,  2.35284792,  2.18656913,  3.11260454,
        6.80316658,  5.55414462,  5.73829151,  5.09562578,  2.6091713 ,
        2.27485084,  4.94572193,  4.50632588,  6.42429995,  2.92809948,
        2.72827887,  3.66296688,  6.21226292,  3.50008142,  2.302515  ,
        3.68444873,  6.74593995,  5.4806082 ,  2.12923154,  3.37615465,
        5.30205425,  4.06016221,  4.09177262,  4.85925346,  3.66952599,
        3.18812206,  4.62519238,  5.09366184,  6.01744229,  2.44993141,
        5.81106715,  5.50512271,  5.29160916,  3.92678422,  4.73365606,
        6.15512783,  5.18367279,  6.23536394,  5.5149554 ,  5.46189156,
        2.24312036,  5.35402291,  3.2090351 ,  6.37455559,  4.46215751,
        3.38097209,  3.47021908,  6.79583174,  2.57965951,  4.52443603,
        4.77833946,  5.83590022,  2.14242122,  6.54307286,  6.10059542,
        2.05960407,  3.02635051,  2.38001791,  6.39899199,  4.66354247,
        5.34620462,  2.61869804,  5.6048249 ,  5.76587729,  2.27126762,
        2.60663582,  5.32803592,  2.08922628,  5.79656354,  5.68849358,
        5.57269238,  5.03539969,  5.15006657,  5.08984094,  6.43854719,
        4.40600665,  4.36050879,  4.8765918 ,  2.57767395,  3.8012618 ,
        5.98263885,  3.57498598,  3.17051657,  5.77721603,  5.51912493,
        3.97202358,  3.06254803,  5.62581742,  4.86079441,  6.90097718,
        5.4549318 ,  5.72192522,  3.84520851,  6.93718608,  6.41567304,
        6.46517056,  2.21856008,  4.0698391 ,  3.09322857,  5.86713084,
        3.22572897,  5.80118043,  4.12735608,  6.10365204,  3.90307575,
        3.45782182,  3.30639741,  6.17944897,  2.79703867,  6.03019453,
        2.26784857,  4.82913405,  5.67482837,  3.0761241 ,  3.31468015,
        2.96884187,  5.5258543 ,  5.29226585,  2.61010116,  6.11302801,
        2.9945091 ,  4.20596894,  5.33282576,  5.65712022,  2.06710252,
        5.89226856,  2.27152853,  6.38713923,  4.82807023,  2.5976598 ,
        6.20830911,  3.69238735,  2.29659016,  4.21598221,  2.89718771,
        4.17898983,  4.26572951,  3.28923335,  6.86094136,  2.56329475,
        5.91716367,  5.9525202 ,  6.96933617,  6.72628019,  4.77297773,
        6.05090042,  2.1907268 ,  5.81390802,  6.48630265,  5.62087593,
        6.83935513,  2.98741204,  4.7517594 ,  5.14665783,  5.60143373,
        2.88785603,  3.70640008,  6.41924445,  4.1231234 ,  4.2779945 ,
        6.8425754 ,  2.52346168,  3.46413746,  6.67561416,  6.50540003,
        4.17617139,  5.47036747,  2.24077895,  3.611794  ,  3.01495423,
        4.61995554,  4.25297264,  5.44887263,  4.79391722,  5.38563732,
        2.85908008,  5.2642741 ,  4.019255  ,  4.22968524,  6.3912242 ,
        3.58588485,  3.54726916,  6.83456106,  2.05642345,  2.24649877,
        5.28039743,  4.76374906,  2.88529733,  5.79972449,  3.94962174,
        6.28836213,  6.77326015,  3.35342134,  2.1402671 ,  3.63173721,
        3.94892425,  5.24821845,  4.84962789,  3.70588199,  3.52105248,
        2.7131836 ,  4.89673299,  2.72783821,  4.06050472,  3.93801914,
        4.47664292,  2.29187269,  6.06272989,  6.49681067,  2.80146844,
        5.41276081,  5.50977548,  2.09192701,  2.08843838,  3.00644175,
        4.89916285,  6.08707641,  3.99718512,  3.52005841,  2.59255413,
        3.83656189,  4.08824997,  5.38164259,  4.63478789,  4.5078803 ,
        2.08593656,  6.10769204,  3.71777039,  5.9348098 ,  4.49625613,
        5.57320828,  2.09979496,  6.04176526,  4.24382005,  5.48352101,
        4.85905996,  5.3607152 ,  5.30764445,  5.51925569,  3.99876735,
        2.54841938,  4.62946503,  3.9905059 ,  4.62052946,  4.81178643,
        5.68883789,  4.24438642,  2.40776417,  3.95335791,  4.55153637,
        6.26842621,  6.22918276,  5.31479533,  2.48136463,  2.50515794,
        5.44537632,  4.52980485,  4.92872163,  3.60958198,  2.67662184,
        4.03657994,  6.4073302 ,  5.30010396,  6.70649364,  5.11603871,
        4.66697549,  5.18369799,  4.65725034,  2.18116726,  4.52368599,
        2.55978505,  6.45669251,  6.75826543,  3.38070447,  5.66296693,
        4.71110914,  2.20594907,  4.53022125,  3.00024833,  2.63480973,
        4.5771394 ,  3.74341051,  3.19818603,  5.76471624,  2.59151546,
        4.76060495,  2.50535212,  4.07589494,  5.49107716,  2.27521664,
        6.95000286,  2.36956183,  3.47628794,  5.14927814,  4.97322921,
        6.94614263,  6.47256597,  5.37479809,  5.02672277,  6.5175305 ,
        2.30762292,  5.92618389,  6.49809812,  5.8714571 ,  4.78865872,
        4.18584783,  6.19302085,  3.09729177,  3.87769368,  4.15137331,
        6.5149138 ,  5.47949426,  5.33748716,  2.24257262,  3.30038201,
        5.82178737,  2.70460343,  6.78310953,  2.41339558,  3.64028632,
        2.54192869,  5.28403478,  3.44231218,  3.01898436,  5.23216487,
        6.06042357,  2.68605062,  4.22446082,  4.35646675,  6.08332605,
        3.69606435,  5.495924  ,  3.26405   ,  3.89200534,  5.63093026,
        6.66452531,  4.82825194,  4.51020728,  6.49102082,  3.1623459 ,
        6.61319523,  6.15659966,  6.69773966,  4.58253678,  2.72361418,
        2.57441214,  2.5178882 ,  6.42703505,  4.77716147,  5.17264717,
        5.45513051,  5.98325276,  6.47141375,  5.6330004 ,  6.45326482,
        4.61049864,  5.08564762,  2.52567373,  4.14681304,  5.81675927,
        2.33450457,  4.47947193,  4.59515819,  3.35228994,  5.24977635,
        6.80722875,  3.07568198,  5.32457134,  6.84282027,  4.94880271,
        2.26470248,  5.43708499,  4.12946831,  6.75815772,  6.18148259,
        6.77784929,  6.40563829,  5.95601409,  5.47004346,  4.85939394,
        5.18462477,  4.75412445,  2.79647078,  5.44904446,  6.92184261,
        6.89779946,  6.16987867,  4.15309332,  5.07155944,  6.00462997,
        5.29583614,  6.66621441,  6.75811187,  5.01399859,  3.60627957,
        6.97096222,  6.58701733,  2.96555724,  5.00734894,  6.51387744,
        3.11251847,  2.52491795,  4.17553526,  6.20503682,  6.3068079 ,
        5.95163957,  3.75483952,  3.04628434,  4.41593584,  2.58231251,
        2.53990398,  6.55837207,  3.30916326,  3.00794294,  3.23487093,
        6.13761168,  6.84108829,  3.11989125,  2.00532133,  3.80733042,
        4.38941066,  6.89539226,  6.97609342,  6.02215196,  5.57961064,
        2.75753671,  5.41546559,  4.50412348,  2.28261197,  6.10923538,
        2.52262979,  2.34595639,  5.84988753,  5.99809035,  4.08117605,
        2.38173367,  3.24105891,  2.35646543,  6.18763759,  3.55202442,
        2.35937754,  4.72167166,  3.21325201,  4.77658103,  5.27177838,
        3.25868155,  3.15293279,  6.7679112 ,  6.65008773,  6.59002722,
        5.1938573 ,  6.13305356,  3.89925556,  2.75146924,  2.26606669,
        3.61840626,  5.0232155 ,  2.76729455,  2.21799992,  5.37111702,
        6.70216428,  5.34714444,  3.86495444,  5.1904591 ,  5.2429226 ,
        3.63375579,  2.88688379,  5.78118034,  6.73377762,  4.53609485,
        6.72216661,  2.6236366 ,  4.02761055,  6.39747093,  2.07009363,
        2.28623343,  5.58086544,  4.13812788,  3.89786515,  2.81061764,
        6.6064213 ,  3.71485898,  5.42036267,  5.65780738,  6.93772988,
        5.61580181,  2.79555868,  2.82452343,  3.12545691,  6.5350658 ,
        6.80912922,  5.63637582,  2.26981947,  4.58994057,  3.70533692,
        3.40903108,  4.79573695,  3.72380013,  3.51600392,  5.04499763,
        6.81796801,  4.58596155,  5.64112039,  3.17582261,  4.31821694,
        2.83464331,  6.96248503,  3.99132365,  2.62548625,  4.3049228 ,
        3.21520434,  2.67112666,  6.38300549,  5.65611638,  5.72610013,
        3.31449261,  3.74687402,  6.40268635,  4.38894772,  6.03536693,
        3.57301247,  6.61936097,  6.57478375,  3.29133143,  3.37881767,
        4.29190951,  2.78318652,  3.47154996,  3.92530825,  5.68694541,
        5.19874319,  3.45830602,  6.77607394,  6.779493  ,  6.07538109,
        6.77353694,  3.21986679,  6.16015009,  3.46914696,  5.368496  ,
        6.21149472,  3.95552016,  3.55342598,  2.58620214,  5.37992924,
        5.03195323,  2.84888083,  2.06416058,  4.12142025,  4.7678995 ,
        6.7598017 ,  3.94875956,  4.97886557,  6.02331098,  2.947528  ,
        6.3383257 ,  5.35985634,  3.75102133,  2.45804365,  5.29021222,
        5.44020553,  6.16907161,  3.07110775,  5.75345357,  4.62906318,
        4.80644617,  2.8642308 ,  2.98898953,  5.84736307,  3.86205869,
        4.81223949,  6.93610551,  4.2344211 ,  6.29928813,  6.55967358,
        2.43917526,  3.54349285,  6.812135  ,  5.29020844,  3.3029618 ,
        3.91599249,  5.47242509,  4.17335352,  3.18873478,  2.08334657,
        6.10669979,  2.5003463 ,  2.80125459,  4.37952553,  6.97285166,
        3.73488338,  6.72173887,  6.66009084,  2.77257682,  2.36424281,
        3.16097409,  4.59292004,  4.17488435,  3.00906553,  5.63355049,
        2.82469003,  3.25536509,  3.32138399,  4.01289673,  5.39444695,
        6.33392333,  6.13136915,  4.27297296,  5.00186334,  6.95656487,
        6.32289682,  2.54448855,  3.65483061,  6.72834894,  6.29611889,
        3.7310734 ,  3.67180711,  4.92910969,  5.90997437,  4.04098712,
        2.95821929,  5.13390442,  3.76426873,  3.61518412,  5.25573663,
        5.01030047,  6.52131229,  6.13450691,  2.81907906,  5.65547555])

In [122]:
dd = d['indicator_ptot_winter.set']['-0.107*s+1.04']
ref_list = []
for s in np.random.uniform(2,6,4000):
    get_s = str(s)[0:3]
    print(get_s)
    ref_list.append(dd.get(get_s))


3.7
2.0
2.6
2.7
4.2
2.2
3.6
5.4
5.0
2.8
2.5
4.7
3.7
5.0
3.7
3.2
5.5
3.6
4.8
3.2
2.2
3.3
3.4
4.2
4.5
4.3
2.0
2.4
4.1
3.8
2.4
4.0
5.7
4.7
3.8
2.9
5.5
2.5
4.9
3.7
2.4
3.9
5.1
5.2
3.1
4.9
4.5
5.6
5.3
4.9
3.0
4.6
2.5
4.1
2.5
4.6
4.9
2.1
2.1
3.6
5.2
2.1
2.2
3.2
3.2
5.2
4.2
5.6
2.6
2.6
3.5
4.0
4.0
3.0
5.6
2.3
2.7
3.2
3.2
5.5
4.7
2.3
4.3
4.6
4.1
2.4
3.7
5.3
3.2
3.9
5.5
3.7
2.5
5.7
2.2
4.3
3.9
4.1
4.5
2.0
2.8
5.4
4.8
5.3
5.1
3.3
4.0
2.7
4.9
3.7
5.4
4.2
2.9
2.0
5.2
3.4
2.2
2.3
2.9
5.3
3.3
4.6
5.4
4.8
2.5
4.8
3.5
5.9
4.0
2.6
3.7
4.7
5.8
2.2
3.6
5.3
3.2
3.4
4.5
4.7
5.2
4.3
3.0
2.8
2.4
4.1
5.1
5.6
3.4
2.1
5.2
3.8
4.5
4.3
3.8
4.2
2.9
4.5
5.1
4.3
2.6
3.5
4.2
4.9
5.5
5.1
4.6
4.8
5.9
4.9
3.7
5.8
4.8
5.3
5.0
3.1
4.1
4.9
3.7
2.8
3.6
2.9
4.1
3.7
4.7
4.0
5.4
2.1
3.6
2.6
5.6
2.2
4.3
3.7
3.2
2.9
4.5
2.4
5.9
4.1
2.1
2.0
3.8
5.1
2.6
4.8
5.8
4.7
5.1
4.2
5.7
2.7
4.7
4.3
3.8
2.8
2.0
3.0
5.1
2.4
3.2
3.0
3.5
3.1
3.4
2.1
5.9
3.5
4.5
5.5
5.4
2.8
4.6
4.3
5.2
3.9
4.4
2.7
5.2
4.7
2.8
4.5
2.0
3.0
4.4
2.2
5.2
2.2
4.4
2.3
5.7
5.3
3.8
2.8
5.0
4.7
2.3
4.7
5.2
4.1
3.4
2.1
2.6
3.1
4.8
5.1
2.1
4.0
3.5
5.4
3.4
5.0
4.2
2.5
3.4
4.0
4.3
3.9
4.8
4.5
2.7
2.3
4.0
4.5
2.0
3.5
2.2
5.9
3.5
3.2
2.1
2.1
2.6
5.3
5.3
5.6
4.4
4.0
3.9
3.0
2.9
3.5
5.0
3.8
3.3
2.7
5.1
3.2
3.7
2.0
5.6
3.6
2.3
3.6
2.3
2.8
4.3
5.2
5.1
4.9
4.4
2.7
3.7
5.6
5.4
5.8
2.2
2.2
4.9
5.0
2.6
2.9
3.0
5.0
4.7
4.1
4.1
3.0
3.7
5.4
4.5
2.5
3.0
2.7
3.5
3.9
2.8
2.3
3.6
2.8
5.3
5.2
3.5
2.7
5.1
5.1
5.3
2.6
2.4
3.2
2.3
4.7
5.8
4.3
3.0
5.3
3.7
3.2
2.6
3.9
4.3
3.5
4.2
5.5
4.9
3.7
2.7
5.5
2.6
5.0
3.9
5.2
2.2
5.9
2.4
4.7
4.6
3.8
5.1
4.1
4.4
4.9
3.9
5.1
2.1
2.8
3.5
2.0
5.0
4.9
2.8
2.0
5.6
2.0
3.8
5.1
5.4
5.6
4.8
5.7
2.6
4.0
4.6
2.1
4.4
5.5
4.9
4.1
4.3
2.2
2.7
3.6
4.2
5.5
4.8
5.2
2.3
2.1
3.3
4.4
2.8
4.1
4.1
2.0
4.3
4.5
2.5
4.4
5.5
3.1
5.3
2.9
2.0
2.8
3.8
4.9
3.1
5.8
3.4
2.7
3.1
3.8
5.1
3.5
4.6
3.9
4.1
2.3
4.8
5.6
4.1
5.6
5.3
2.0
2.0
4.0
5.7
2.4
4.9
3.1
5.5
4.0
3.5
5.7
2.2
5.2
5.9
2.6
4.6
4.3
5.8
5.9
4.8
3.2
2.6
2.3
2.1
5.7
5.0
4.6
2.5
2.5
2.1
4.3
5.0
2.3
3.5
4.0
5.2
5.6
4.3
2.0
3.8
2.3
5.1
3.9
4.6
4.4
4.2
5.9
2.5
3.7
3.1
5.2
4.8
4.5
2.6
3.0
5.7
5.2
4.9
3.8
5.5
3.3
5.1
2.2
3.2
3.7
4.9
4.8
5.5
2.4
3.9
4.6
2.9
3.0
2.3
4.6
3.6
5.2
2.2
5.5
3.0
5.5
5.1
5.2
3.5
4.3
2.6
5.5
5.1
4.7
4.9
2.2
2.4
4.1
5.6
3.8
4.3
5.8
4.3
4.8
5.9
2.0
5.8
4.6
2.5
2.3
5.4
4.4
5.5
2.1
4.6
3.2
4.6
5.5
3.7
5.6
4.6
3.2
5.0
4.5
4.5
2.5
2.8
4.8
3.1
5.3
3.4
2.4
4.3
4.1
3.2
3.7
4.4
3.6
5.7
4.9
5.7
3.9
4.6
2.2
3.1
2.9
4.4
2.7
2.9
2.5
4.3
4.1
4.7
3.9
4.3
2.0
5.2
5.5
2.1
4.3
3.1
5.6
4.7
3.9
5.7
5.7
3.4
4.0
4.5
3.0
2.6
2.9
5.1
3.6
2.6
2.5
4.3
3.8
3.2
3.0
4.0
5.4
4.4
3.9
3.8
2.0
3.3
5.9
2.3
5.4
2.1
3.5
3.0
2.5
2.3
5.2
5.5
3.9
5.8
2.7
5.4
2.6
5.1
2.4
3.6
2.3
2.2
4.9
4.0
3.9
3.3
5.4
5.6
2.3
3.6
4.6
4.4
3.5
3.4
5.6
4.1
2.4
4.1
2.5
5.2
4.7
5.7
2.2
2.5
3.1
2.2
4.8
2.5
3.6
2.0
4.2
5.0
2.5
3.9
4.1
2.1
5.2
2.8
3.4
3.8
4.7
5.3
5.5
3.3
4.5
4.1
5.7
3.8
5.4
2.4
5.4
3.9
5.0
3.1
2.7
5.2
4.4
2.6
2.0
3.1
2.3
4.7
2.8
3.8
5.9
5.3
5.4
2.0
2.7
4.4
4.8
5.5
3.4
5.8
4.4
4.3
5.3
4.7
3.7
2.6
4.8
4.3
2.2
5.6
3.0
2.8
2.9
2.5
3.2
5.0
4.2
4.1
4.0
4.7
4.4
5.2
3.5
5.8
5.7
5.5
3.2
3.0
4.8
2.4
2.0
3.2
3.3
5.2
3.3
3.8
2.8
4.6
3.8
2.2
4.1
5.2
3.7
3.8
4.8
5.9
5.1
5.7
3.1
3.5
4.6
3.1
2.1
3.9
2.9
2.6
3.6
3.9
5.5
5.8
4.4
5.8
3.0
5.0
2.5
3.9
2.9
5.4
4.7
3.4
3.4
3.5
3.5
2.7
2.2
5.7
5.9
4.0
5.0
5.7
4.4
4.0
2.9
3.6
4.8
2.8
4.1
2.9
2.2
3.0
4.3
3.7
2.1
5.9
5.4
3.7
2.2
4.0
2.9
3.7
2.8
3.0
4.4
4.7
3.9
4.8
5.3
3.0
5.8
2.9
5.0
5.3
2.3
5.4
4.4
2.4
5.2
5.9
5.9
2.9
3.7
4.2
5.9
3.0
5.4
2.7
5.2
5.9
3.8
4.0
4.8
4.1
5.2
2.7
5.4
3.3
2.2
4.2
2.1
2.9
2.9
2.3
4.4
5.0
2.5
4.7
5.2
2.5
4.1
5.0
5.1
4.7
3.6
3.3
3.5
3.3
5.5
4.7
2.6
3.2
3.9
4.3
2.3
3.8
3.0
2.0
4.7
5.1
3.7
2.0
5.6
3.3
5.0
3.4
2.8
4.3
4.2
2.5
4.9
3.8
3.6
5.4
2.2
4.9
2.2
4.9
5.5
4.0
3.5
3.7
5.4
4.5
3.1
4.8
4.5
5.4
3.4
2.1
2.2
5.3
4.9
2.5
4.4
5.7
2.0
4.8
4.8
5.9
5.8
5.6
3.7
2.5
4.6
4.5
5.9
3.4
2.0
2.2
3.4
3.6
4.1
2.8
4.2
5.3
2.1
3.1
3.1
5.7
5.3
5.6
3.3
2.4
4.5
3.9
3.8
5.2
3.2
2.7
4.3
5.4
4.4
2.4
5.1
5.3
4.1
4.7
5.2
2.7
2.0
4.2
2.4
3.9
3.8
3.7
4.0
4.5
4.6
5.2
2.2
4.6
2.4
2.9
3.9
3.3
4.1
4.2
4.9
4.7
3.8
3.2
4.8
2.2
4.0
4.2
4.6
2.9
2.8
2.3
2.1
4.8
4.1
4.4
3.6
3.3
4.8
4.3
5.1
4.3
3.4
4.6
4.3
5.4
4.1
2.7
5.4
3.4
2.3
5.9
3.7
5.2
4.2
2.7
5.6
4.5
5.7
4.6
4.7
4.9
4.7
2.1
5.3
5.1
2.9
4.7
5.4
2.8
4.0
3.3
3.3
4.3
5.9
3.1
3.7
2.8
5.4
3.8
3.3
3.1
5.6
5.3
3.5
2.8
4.6
2.5
5.1
4.3
4.8
3.1
2.9
2.0
4.7
2.3
5.9
3.9
2.7
5.0
4.2
5.1
4.8
4.8
2.2
2.8
2.4
2.9
3.4
2.3
5.3
2.9
5.4
5.7
4.0
3.7
2.3
3.7
4.3
2.1
5.0
2.1
4.5
5.1
3.0
2.9
3.7
2.9
3.7
3.7
5.4
4.0
2.0
4.5
4.8
5.3
5.9
3.3
4.2
5.9
4.2
2.2
3.5
4.7
2.9
2.6
2.2
4.6
2.7
5.9
4.3
5.4
2.0
3.6
4.3
3.0
2.0
4.0
4.9
2.4
5.7
4.8
4.6
3.0
4.1
2.5
5.8
2.1
3.4
5.5
4.9
5.1
2.0
5.2
5.4
5.3
3.1
4.5
2.6
4.8
3.3
4.0
3.0
3.8
3.8
2.5
5.0
4.7
2.0
5.6
4.5
3.2
4.3
5.4
2.0
2.4
4.6
3.2
3.1
3.3
2.2
2.0
3.1
4.4
2.1
4.9
3.8
2.5
4.0
4.4
3.3
5.7
5.3
4.2
3.8
3.1
5.3
4.3
3.8
4.1
2.6
3.7
5.0
2.9
4.3
2.6
2.6
5.8
2.3
3.9
2.6
3.8
4.4
4.3
3.6
3.4
2.4
4.0
4.9
4.2
4.8
2.3
5.3
2.6
2.0
3.3
5.2
2.0
5.2
2.8
3.8
2.0
5.3
5.1
2.5
3.9
2.5
2.8
5.4
2.8
2.0
2.3
5.2
3.9
2.3
3.4
4.0
3.3
2.6
4.5
2.5
5.3
5.1
3.2
2.5
5.8
3.0
4.1
4.2
5.9
5.0
4.1
5.4
4.6
4.3
4.3
2.4
2.7
3.9
4.3
5.1
5.7
4.7
5.3
3.2
3.7
4.4
4.5
4.0
3.5
4.4
2.9
3.8
3.4
5.3
3.5
5.0
3.0
5.3
2.7
3.2
5.9
5.2
4.5
2.7
3.6
5.6
2.1
2.0
4.9
4.9
4.3
4.5
4.0
5.0
3.5
5.1
3.9
4.2
5.6
2.0
5.0
2.4
2.6
5.2
3.1
5.5
4.7
2.2
2.4
5.5
2.5
3.2
3.4
2.2
3.8
4.4
3.9
4.1
3.5
3.7
4.2
5.6
3.1
4.5
4.8
2.3
5.5
5.9
4.7
4.3
2.2
2.8
2.5
5.5
3.3
4.3
5.7
4.7
5.8
3.4
2.6
2.2
3.3
5.5
2.8
4.6
4.7
4.0
2.6
2.4
5.9
3.0
5.9
4.1
3.9
4.4
4.6
5.8
2.0
3.3
4.4
4.5
3.2
3.6
3.1
2.9
2.0
3.7
3.5
4.9
2.5
3.2
4.9
3.4
2.3
2.8
5.4
2.6
4.5
2.5
2.3
5.4
4.9
5.8
2.5
3.3
4.1
3.1
3.3
3.3
4.2
2.1
4.8
3.9
5.4
4.4
3.4
3.0
5.4
3.8
4.0
3.2
3.0
3.9
2.1
4.9
5.4
3.4
3.9
5.9
4.4
3.1
5.7
2.1
5.7
2.3
3.5
4.0
2.2
5.2
2.7
5.6
3.1
2.7
4.9
2.5
4.5
5.5
2.3
3.3
3.8
4.3
2.1
2.8
5.2
3.0
4.8
2.4
5.6
4.9
5.7
5.5
3.7
5.8
5.1
2.8
4.5
2.6
4.4
4.9
4.6
5.9
5.8
3.4
4.7
3.2
4.2
3.8
4.6
4.0
5.5
5.6
2.5
4.7
4.6
4.6
4.5
2.2
4.5
2.0
3.5
4.8
2.7
3.4
2.7
2.8
2.3
4.1
5.7
4.0
5.1
2.2
4.9
3.3
5.0
2.6
2.5
3.5
2.6
5.2
5.5
2.4
2.7
5.7
3.5
2.7
2.0
4.5
3.3
2.7
5.8
5.4
2.7
2.4
5.1
5.7
4.2
3.8
4.3
2.4
4.0
3.5
4.2
5.4
2.2
4.0
2.2
3.4
4.3
3.1
3.1
3.1
3.4
3.5
5.2
3.0
4.5
2.9
5.9
4.6
2.3
5.5
4.1
3.7
2.1
4.6
4.1
4.2
4.9
4.7
5.3
2.4
4.7
4.3
4.1
5.5
2.3
5.6
4.6
2.0
2.6
4.1
5.8
5.5
4.8
2.6
2.6
4.2
3.5
3.9
5.3
3.8
3.0
4.1
5.9
5.6
5.3
3.1
5.8
3.6
2.9
5.1
3.9
4.4
3.0
5.1
4.5
3.9
3.4
2.9
5.5
5.8
3.5
5.9
4.6
3.1
3.2
5.5
3.7
4.5
4.7
3.3
4.5
5.2
4.9
4.5
3.9
4.8
5.2
5.2
3.4
4.0
4.0
5.2
2.2
2.9
5.0
2.5
3.5
2.1
2.6
5.9
2.8
3.1
4.1
3.4
2.2
5.4
4.2
2.6
3.7
2.1
4.7
2.0
2.8
4.5
3.3
5.4
5.6
5.5
5.6
3.9
5.2
2.4
2.9
2.1
2.2
4.4
4.5
3.2
5.2
2.4
5.3
4.1
5.8
5.8
4.5
3.0
3.2
3.8
2.6
3.3
5.1
2.3
3.3
5.0
4.2
4.9
2.8
2.1
2.6
5.5
4.2
5.8
2.8
3.3
3.5
3.5
2.9
2.7
2.3
3.6
4.3
5.5
4.5
2.7
5.5
2.6
4.4
5.2
4.9
4.4
5.3
3.8
3.6
2.9
5.0
5.6
2.0
5.6
5.6
5.9
2.5
2.5
2.7
2.3
5.6
2.2
5.0
2.4
2.1
3.8
3.8
3.7
5.0
2.4
3.4
2.7
5.7
3.4
3.1
3.8
5.7
5.9
5.4
4.6
4.9
3.6
2.7
4.0
4.9
2.0
3.1
2.0
4.9
4.0
2.8
2.2
3.2
2.6
4.9
4.2
4.9
2.1
3.2
5.7
5.5
4.0
5.5
4.1
5.9
4.3
4.2
4.6
5.0
5.1
3.5
4.5
4.5
5.4
3.4
4.0
5.2
2.4
3.6
5.7
2.8
3.4
5.0
5.4
4.3
5.2
3.9
5.6
3.3
2.9
4.3
3.2
3.5
2.4
3.2
2.2
5.6
2.0
3.1
3.7
4.4
5.9
3.1
2.5
2.8
4.3
2.4
5.9
5.5
2.7
4.3
2.2
3.6
2.6
3.0
5.3
5.0
4.4
5.7
2.2
3.3
2.2
2.9
3.8
4.7
5.0
4.3
5.6
4.5
4.1
4.4
2.7
2.4
3.7
2.1
2.4
3.0
5.7
4.0
2.7
2.8
4.1
5.8
3.2
2.1
3.5
3.1
2.0
4.6
4.7
2.5
3.3
5.2
4.1
5.7
4.2
5.9
2.4
2.3
5.8
2.6
2.6
5.7
2.8
5.1
4.2
3.7
5.8
3.8
3.3
4.4
2.2
5.8
4.1
5.8
5.9
4.6
3.8
2.3
2.2
3.3
3.2
5.8
5.7
5.5
5.1
5.3
3.7
5.3
3.1
2.0
5.7
2.1
2.0
3.6
2.9
5.9
5.4
5.2
3.2
3.4
5.4
5.0
5.1
3.8
2.4
5.2
5.7
4.3
2.7
5.3
3.9
5.7
3.7
4.2
2.1
2.3
2.5
5.4
5.0
3.9
3.0
3.3
2.1
4.7
4.3
2.2
4.2
5.9
2.3
2.1
2.8
4.3
3.2
4.7
3.4
2.4
4.1
5.0
2.3
3.3
3.4
4.6
4.3
5.0
4.2
5.7
3.1
3.4
5.7
3.2
4.5
5.4
5.9
3.5
3.5
5.1
4.2
2.6
5.6
2.2
3.3
3.4
4.8
3.9
5.8
4.8
4.2
2.9
3.3
3.0
2.0
2.5
3.6
3.0
2.3
5.8
4.2
2.2
2.1
3.1
3.8
5.3
3.8
3.1
4.6
4.2
5.6
5.0
5.9
4.7
4.6
3.0
5.3
4.5
3.4
4.1
5.5
4.2
2.9
4.1
3.9
3.7
2.0
5.2
3.3
4.8
4.2
3.6
5.2
2.8
4.9
5.5
3.5
5.5
4.5
5.2
5.7
4.0
3.0
4.3
5.0
5.8
5.0
2.4
5.0
3.5
4.7
5.5
4.9
2.8
2.2
4.2
2.1
5.0
3.8
5.3
4.5
2.3
2.3
2.1
4.0
2.3
2.9
3.7
2.2
2.1
2.6
4.3
5.3
4.8
2.8
2.6
3.2
3.6
5.8
3.0
3.1
3.8
2.7
2.1
2.9
2.4
2.9
4.7
3.9
5.0
3.4
5.6
4.9
3.9
5.4
5.7
5.8
3.7
3.6
5.2
3.8
4.6
2.0
5.6
2.7
5.7
4.5
4.7
4.8
4.3
4.6
5.5
2.8
5.9
5.9
5.6
4.6
5.5
3.3
2.6
5.0
5.9
5.7
2.2
5.6
3.7
2.2
3.4
3.1
4.2
4.3
5.2
5.0
2.9
2.9
4.4
2.8
4.3
3.0
2.3
3.2
4.6
3.8
3.0
5.8
3.9
4.7
4.9
2.0
5.9
2.9
2.2
5.6
4.1
4.9
3.3
2.8
4.3
4.7
4.0
5.1
2.4
2.6
2.5
3.1
5.3
3.0
2.8
3.4
4.8
4.9
2.4
3.7
2.4
3.2
2.3
4.7
5.7
4.1
3.4
4.0
2.6
2.6
2.8
4.5
3.5
3.1
5.6
2.7
4.7
3.3
2.0
2.4
3.2
5.4
3.9
4.1
2.3
4.6
4.1
2.4
2.5
3.3
4.7
5.9
2.4
4.5
3.3
5.4
3.2
5.8
2.0
3.5
4.7
2.0
3.1
4.0
4.7
4.4
5.6
3.5
4.9
3.4
4.5
5.0
4.7
4.8
4.2
5.2
2.7
4.8
4.0
5.8
3.4
5.8
4.7
3.4
3.8
4.2
5.4
4.8
3.2
4.6
4.2
5.6
3.9
5.0
5.0
2.8
5.5
3.7
2.9
2.1
3.8
3.6
4.6
2.0
4.5
3.5
5.6
3.6
4.8
3.3
4.9
2.1
5.6
5.2
3.8
2.9
5.2
5.3
5.1
2.6
3.9
4.9
4.2
3.1
2.2
5.7
5.7
3.3
3.4
3.8
2.6
5.2
4.3
4.4
4.0
5.9
2.3
2.9
2.8
3.6
4.4
2.5
4.0
5.5
5.7
3.6
4.2
3.5
2.0
4.1
5.1
5.4
3.9
5.4
2.8
2.4
4.3
5.8
5.7
4.8
2.5
4.9
4.5
5.2
2.2
5.5
4.7
4.4
4.4
2.7
5.0
3.6
3.0
2.4
3.1
5.7
3.7
5.0
4.3
5.2
3.9
3.8
4.3
2.9
5.9
3.5
5.0
5.7
4.1
4.5
5.6
4.1
4.9
2.5
3.6
5.4
4.0
5.8
4.0
5.3
5.3
2.0
4.2
4.0
4.1
2.5
3.4
5.1
2.8
3.7
4.8
3.9
3.1
4.7
3.2
2.9
2.1
5.5
2.5
4.7
4.8
4.3
2.2
3.9
5.1
5.4
3.6
3.9
5.2
5.2
4.9
2.1
4.6
4.0
5.1
5.6
5.8
5.2
2.5
5.5
4.4
4.0
2.0
3.3
2.8
4.2
5.9
4.4
4.8
2.5
3.1
5.1
4.0
4.6
2.7
2.4
4.4
5.5
5.6
5.3
3.4
2.5
3.6
4.9
5.8
5.7
4.1
4.0
3.3
2.2
5.3
5.1
4.8
5.8
2.4
2.6
5.3
3.7
2.1
5.2
3.9
4.6
3.5
4.2
5.9
4.0
5.6
3.3
3.7
4.7
4.6
2.6
5.5
3.6
2.1
2.8
4.6
5.0
2.2
3.9
2.8
5.3
5.1
5.8
2.4
5.9
2.7
4.3
5.7
4.5
5.2
4.2
2.5
2.9
2.3
3.6
5.4
2.9
5.7
4.4
3.7
2.8
4.6
3.0
3.9
5.7
3.5
3.6
3.6
2.9
3.4
2.6
2.9
4.1
4.9
5.1
3.6
2.4
4.8
4.6
3.6
4.9
4.5
4.0
3.9
4.7
4.5
2.9
4.1
3.7
3.3
2.3
5.3
4.9
5.1
4.0
5.1
5.4
3.4
3.7
5.6
5.4
2.0
3.2
5.0
4.1
3.6
4.3
5.9
5.9
2.8
5.7
4.0
2.7
2.9
5.9
3.7
5.6
4.4
3.0
4.1
5.5
3.9
2.9
5.1
4.5
3.5
5.5
4.9
4.0
4.6
2.6
2.0
4.2
5.2
2.2
3.6
5.3
2.3
5.1
3.5
2.4
5.1
2.8
2.4
5.3
3.4
2.7
2.7
5.0
5.0
2.6
3.1
5.0
3.8
4.7
2.1
4.6
2.7
3.3
2.9
2.4
2.9
4.5
2.1
2.9
2.6
4.1
2.0
4.1
4.9
4.7
3.0
3.0
5.7
5.9
2.4
2.4
3.6
3.0
3.9
5.1
5.0
4.3
2.6
2.0
4.3
2.4
3.7
3.1
4.9
3.4
3.9
4.0
5.6
5.5
4.3
2.4
5.3
2.3
2.6
2.3
4.4
4.2
4.4
2.1
4.3
4.8
5.7
2.8
4.4
2.6
2.8
5.2
4.0
2.7
5.0
5.7
3.4
4.8
3.9
4.6
2.4
3.0
2.8
2.3
5.4
5.4
5.3
2.5
2.4
3.1
2.0
3.3
2.8
3.6
4.0
4.4
5.8
3.0
5.0
4.2
3.1
5.5
3.4
3.5
5.3
4.0
5.6
5.4
4.4
2.9
4.2
5.4
2.6
2.1
2.4
4.6
4.4
3.5
3.1
5.6
3.9
3.0
2.9
2.1
2.0
5.7
4.0
2.1
5.3
2.5
5.8
2.1
3.9
2.3
2.2
4.9
4.8
2.4
2.6
3.4
4.0
5.0
3.2
5.0
2.2
2.9
5.6
4.1
3.1
3.7
4.2
3.3
4.2
2.8
5.7
2.3
3.8
3.3
4.0
2.5
5.2
5.8
5.0
4.6
4.3
4.5
2.4
5.7
4.9
3.9
2.3
2.2
4.2
5.6
2.5
2.2
3.3
2.9
3.6
5.8
4.0
4.4
2.8
3.5
2.4
3.5
5.5
4.8
5.2
5.3
2.1
2.4
5.0
3.6
4.3
2.7
5.5
3.1
2.1
5.4
2.2
4.1
4.4
2.2
5.6
4.6
5.8
4.1
3.7
4.9
4.6
5.0
4.3
4.4
3.6
4.9
5.0
2.4
4.5
2.7
2.1
4.6
4.5
2.0
2.0
5.4
4.1
2.9
2.7
3.9
4.0
2.9
2.1
3.2
5.6
2.6
3.6
2.8
2.3
5.9
3.6
3.9
3.3
4.5
4.5
5.3
3.8
2.8
4.9
5.5
2.5
3.5
5.0
2.4
5.3
4.8
2.7
2.3
2.8
3.3
2.5
3.8
3.5
4.0
5.6
5.6
5.7
5.0
2.4
2.8
4.7
3.8
4.9
3.0
2.9
5.2
5.2
4.9
2.4
3.9
5.1
5.1
3.4
3.2
2.1
2.8
5.0
4.0
2.0
5.6
5.8
3.6
4.3
2.9
5.2
4.9
5.0
2.3
4.3
4.9
5.9
2.8
4.9
3.8
3.7
4.5
5.5
2.2
4.9
4.2
4.1
3.6
5.0
5.7
5.0
3.8
3.2
2.2
5.4
5.7
4.5
4.0
4.8
5.4
4.4
4.9
2.0
4.6
3.3
4.8
4.1
4.5
3.6
5.7
4.2
2.3
2.4
5.2
5.3
4.0
2.2
2.7
4.1
2.3
4.2
4.6
2.2
4.6
5.5
3.5
5.5
4.7
3.2
4.3
2.5
2.4
2.7
2.2
4.6
2.9
2.4
2.3
5.0
3.9
4.8
4.6
3.1
3.2
2.2
2.1
4.1
3.9
4.5
2.5
3.6
2.6
2.2
4.2
3.6
2.4
4.9
5.1
4.7
3.4
5.9
4.7
3.7
4.4
2.0
2.3
3.7
4.3
2.9
5.9
3.9
5.7
4.3
2.1
2.6
2.1
5.3
4.2
4.2
5.4
2.7
2.0
5.9
2.5
2.6
3.7
3.5
5.7
4.3
4.9
3.6
5.9
5.6
5.8
3.5
5.4
5.9
2.0
2.3
3.8
2.3
3.1
3.1
3.5
5.9
4.6
3.6
4.5
3.3
4.6
2.1
5.5
5.8
5.5
2.7
3.1
3.3
3.3
2.5
2.8
5.8
4.9
4.1
3.0
2.1
5.9
3.5
2.9
4.6
3.3
3.7
5.8
2.6
5.5
2.7
5.5
2.8
5.5
2.2
5.5
4.5
5.4
4.7
4.8
2.9
4.4
5.0
4.8
4.8
5.7
4.5
5.9
4.3
2.4
4.0
5.7
4.6
3.2
2.1
5.4
4.7
2.9
3.9
3.4
4.2
4.3
5.5
3.4
3.0
4.4
3.1
3.6
4.8
2.1
5.8
3.6
3.1
3.7
5.9
3.0
4.6
5.9
3.4
2.5
3.9
5.8
5.2
3.2
5.0
3.1
3.4
5.7
4.7
4.0
3.4
4.0
3.4
2.7
2.1
5.5
5.2
2.9
4.7
5.1
2.8
4.5
5.9
5.9
5.8
3.0
3.6
4.3
2.1
5.7
3.4
2.2
2.1
3.7
4.5
5.8
2.1
4.4
4.8
2.5
5.0
5.9
3.4
2.6
4.7
4.7
3.2
4.0
5.4
5.1
3.6
2.9
3.5
2.9
2.2
3.1
2.3
2.1
4.1
5.2
5.5
3.5
2.3
3.6
3.6
4.3
5.5
3.2
5.2
3.6
2.1
4.1
4.0
4.3
5.2
4.2
2.2
4.4
5.3
3.7
3.1
3.7
4.4
3.1
5.1
2.3
3.4
2.9
3.6
3.7
2.1
4.6
4.9
4.3
3.0
2.8
4.2
5.3
3.7
2.7
4.2
4.0
2.5
3.8
3.8
2.6
5.3
2.9
2.0
3.6
5.0
5.1
4.2
3.4
4.6
2.0
4.7
4.3
4.6
2.4
2.5
4.6
4.8
2.8
2.5
4.5
5.4
5.3
4.9
3.6
4.3
2.9
5.5
2.7
4.6
3.1
2.6
3.8
5.5
5.6
4.1
3.2
2.5
5.5
2.4
5.7
5.9
5.7
4.9
2.9
2.8
3.9
5.2
2.4
2.0
3.1
4.7
5.9
3.1
2.4
5.3
5.0
2.9
3.5
5.9
5.1
5.9
3.6
2.9
4.8
2.1
2.8
4.1
5.5
5.1
5.0
2.3
2.1
4.7
2.3
2.0
3.5
3.1
5.5
5.3
3.7
5.1
5.4
3.1
2.6
5.4
4.7
4.9
2.9
4.1
4.2
2.9
2.4
5.8
4.0
3.7
5.5
4.0
5.8
2.7
4.8
3.0
2.2
3.1
5.9
3.4
3.5
3.4
4.2
4.4
4.1
3.6
3.5
2.6
2.6
2.7
3.6
5.8
5.6
3.7
4.6
2.2
3.0
5.3
4.0
4.6
3.6
5.3
2.7
3.6
5.9
2.0
4.6
2.4
5.4
3.1
2.7
4.3
3.9
2.6
5.6
3.2
3.6
5.5
2.7
5.8
3.1
4.4
3.9
2.0
4.7
2.1
5.2
3.8
3.2
2.5
4.7
3.5
2.5
4.4
4.6
2.3
4.3
3.5
3.2
3.6
4.8
2.2
3.8
4.8
4.1
5.9
4.5
2.8
2.6
4.9
3.5
2.4
4.7
3.1
2.4
5.9
5.8
4.8
5.9
2.7
4.9
5.3
5.4
5.6
4.7
5.2
3.0
4.3
5.1
3.8
5.8
5.0
5.6
3.5
3.2
3.3
3.1
3.2
3.4
5.6
4.3
3.4
4.0
2.3
2.9
5.3
4.5
3.9
2.2
3.3
5.5
2.1
3.8
4.8
5.0
2.3
4.5
2.1
3.7
3.5
2.3
2.3
4.6
2.6
2.9
3.3
2.8
4.7
3.9
4.5
3.6
3.4
5.1
3.8
2.5
5.4
5.4
5.1
3.6
3.3
2.0
4.4
4.8
3.1
4.6
3.8
4.4
4.1
4.1
3.1
5.0
2.3
4.3
5.1
2.6
4.6
5.7
2.7
3.2
2.7
3.4
2.0
4.2
2.4
3.6
4.2
2.5
5.2
4.5
4.0
2.8
2.5
4.5
3.7
2.7
5.9
2.4
3.0
4.5
2.3
2.8
4.2
4.3
2.5
4.9
4.2
4.0
2.9
4.4
5.1
4.3
3.6
5.3
3.1
5.7
5.7
4.3
2.7
5.9
2.9
4.9
4.5
5.8
2.3
5.8
4.6
4.8
5.2
5.4
2.5
2.8
4.7
3.2
3.7
2.1
3.7
4.5
2.5
5.9
4.7
3.5
4.0
4.8
5.1
3.7
4.5
5.9
2.1
5.2
4.6
3.1
2.2
5.6
5.0
3.0
5.4
5.6
2.0
5.2
2.2
3.5
3.2
5.5
3.4
3.2
4.8
2.1
2.1
4.3
5.1
4.1
4.1
2.8
3.5
5.6
2.2
2.0
4.7
2.9
4.5
4.7
4.9
4.7
5.1
4.5
2.8
2.1
3.6
5.2
4.0
3.7
3.7
2.3
3.3
3.7
5.5
4.7
3.5
4.4
2.8
5.9
2.7
2.0
4.1
2.9
2.3
2.7
2.2
2.9
3.7
5.0
5.7
4.8
5.4
2.7
4.1
4.5
2.2
3.0
2.1
5.1
3.3
5.1
3.1
4.1
5.5
4.9
5.9
3.1
2.7
4.7
4.7
4.0
4.7
4.7
3.9
5.5
3.5
2.7
4.6
5.1
3.1
4.3
3.8
5.8
2.7
4.9
2.5
2.3
5.0
2.2
3.6
2.6
4.6
5.8
3.4
2.7
2.4
4.2
4.4
2.6
5.3
2.8
3.2
4.9
4.7
2.0
3.8
4.5
4.2
4.1
4.5
2.8
4.7
4.6
5.8
5.7
3.7
5.3
3.1
3.4
5.3
3.0
2.4
2.1
4.1
2.3
4.1
2.8
2.9
5.6
4.2
5.4
3.4
4.6
5.0
3.6
5.1
4.2
2.6
3.8
4.6
3.7
4.2
4.2
5.5
3.6
2.5
5.3
5.6
5.6
3.9
5.3
2.6
2.7
4.2
4.7
2.0
3.3
5.1
2.1
4.5
5.8
4.8
2.5
3.9
4.6
2.0
5.7
4.7
5.3
3.5
3.7
3.1
5.9
3.1
4.1
4.1
5.1
5.9
3.8
3.9
3.9
2.8
2.9
5.1
4.4
2.0
3.1
4.7
3.7
5.1
4.3
4.2
2.1
4.2
2.8
3.5
2.3
3.5
3.2
4.3
5.1
4.3
2.3
4.2
5.2
2.8
2.0
5.5
4.8
2.3
4.3
2.4
3.4
3.2
5.6
3.0
3.5
4.6
2.6
3.0
5.2
3.1
3.8
4.9
3.1
3.7
3.9
5.0
3.0
5.7
2.9
2.3
5.7
2.6
4.1
4.8
4.1
3.7
2.4
5.7
3.4
4.2
5.0
4.6
4.2
4.6
5.1
2.0
4.5
3.6
3.7
2.7
4.3
2.9
3.6
2.9
4.1
3.4
5.3
4.9
2.8
3.8
4.6
5.7
5.3
4.8
3.8
2.6
2.2
5.6
2.6
4.6
5.0
2.3
5.7
5.7
4.1
3.3
2.1
3.2
2.6
4.3
2.7
2.5
5.0
3.4
2.9
4.5
4.4
3.5
4.9
5.1
4.8
4.5
4.6
4.0
2.9
3.3
5.6
3.1
4.0
4.7
4.2
4.1
4.9
5.8
3.7
5.4
5.6
3.9
2.4
3.0
2.3
3.6
2.1
2.2
4.4
3.5
5.7
3.1
3.4
4.1
4.8
3.9
5.7
4.0
5.2
2.9
3.1
4.3
2.6
2.7
2.8
3.3
4.3
5.0
3.9
4.8
2.1
2.4
3.2
3.4
5.3
4.6
3.4
5.8
5.5
4.8
2.8
2.1
5.8
3.5
5.8
5.1
2.9
2.3
5.9
3.1
4.6
2.2
5.0
5.3
5.2
3.2
2.2
3.6
3.5
5.1
2.7
4.0
4.7
4.0
4.0
5.7
3.1
2.2
2.9
5.5
2.8
2.7
4.9
4.7
5.9
5.8
5.3
3.0
5.0
3.0
3.5
5.7
5.3
2.6
2.3
5.0
2.0
4.0
3.1
5.4
3.0
2.6
5.5
2.1
2.3
3.1
4.0
2.1
4.8
4.1
3.1
3.5
2.2
5.1
5.5
5.8
5.2
5.9
5.8
2.1
4.2
4.4
2.3
5.1
2.7
4.1
4.7
2.6
5.1
5.2
5.2
5.1
2.8
5.9
3.5
5.3
2.9
4.2
3.1
5.7
4.1
5.8
2.3
4.5
2.8
2.8
5.8
4.0
4.0
4.3
3.3
3.1
5.7
4.2
4.9
2.5
5.0
4.6
2.9
2.3
3.3
2.8
2.9
2.2
2.5
5.6
2.1
4.3
5.5
3.9
2.5
2.9
5.3
4.2
5.3
2.5
4.0
2.4
3.2
4.0
5.4
2.9
5.0
5.5
2.1
4.9
3.6
5.6
4.0
4.4
4.7
4.1
4.9
3.2
5.5
5.6
5.0
2.5
2.0
5.5
5.9
5.0
2.8
5.9
5.7
5.3
3.3
4.6
4.2
5.1
2.3
3.2
5.6
5.5
2.3
5.6
3.6
4.5
3.6

In [148]:
float('1*k+3')


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-148-052d373676d3> in <module>()
----> 1 float('1*k+3')

ValueError: could not convert string to float: '1*k+3'

In [ ]: