In [1]:
import pandas as pd

In [2]:
file_path = 'D:/Utveckling/git/ekostat_calculator/workspaces/5cf3719a-9d44-48e0-b228-496a6894d263/input_data/raw_data/physicalchemical_sharkweb_data_None_None-None_20180829.txt'

In [3]:
df = pd.read_csv(file_path, sep='\t', encoding='cp1252')


C:\Continuum\Anaconda3\envs\EKOSTAT_tool\lib\site-packages\IPython\core\interactiveshell.py:2698: DtypeWarning: Columns (65,83,87,91,95,103) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)

In [5]:
df.head()


Out[5]:
delivery_datatype check_status_sv data_checked_by_sv visit_year platform_code visit_id expedition_id station_name reported_station_name sample_project_name_sv ... location_helcom_ospar_area location_economic_zone location_county location_municipality station_viss_eu_id reporting_institute_name_sv data_holding_centre internet_access dataset_name dataset_file_name
0 Physical and Chemical Klar Leverantör och Datavärd 2014 77K9 66 NaN C3S-SEDIMENTATIONSFÄLLA C3S-SEDIMENTATIONSFÄLLA PROJ Ospecificerat ... HELCOM Svensk ekonomisk zon Utanför gränser Utanför gränser NaN Umeå Universitet Swedish Meteorological and Hydrological Instit... http://sharkweb.smhi.se, http://sharkdata.se SHARK_PhysicalChemical_2014_XXX_UMSC SHARK_PhysicalChemical_2014_XXX_UMSC_version_2...
1 Physical and Chemical Klar Leverantör och Datavärd 2014 7798 1716 NaN REF V2V REF V2V REG Kalmar KVK ... HELCOM Svensk ekonomisk zon Kalmar län Västervik NaN Calluna AB Swedish Meteorological and Hydrological Instit... http://sharkweb.smhi.se, http://sharkdata.se SHARK_PhysicalChemical_2014_KAL_CALLUN SHARK_PhysicalChemical_2014_KAL_CALLUN_version...
2 Physical and Chemical Klar Leverantör och Datavärd 2014 7798 1716 NaN REF V2V REF V2V REG Kalmar KVK ... HELCOM Svensk ekonomisk zon Kalmar län Västervik NaN Calluna AB Swedish Meteorological and Hydrological Instit... http://sharkweb.smhi.se, http://sharkdata.se SHARK_PhysicalChemical_2014_KAL_CALLUN SHARK_PhysicalChemical_2014_KAL_CALLUN_version...
3 Physical and Chemical Klar Leverantör och Datavärd 2014 7798 1718 NaN V1-V V1-V REG Kalmar KVK ... HELCOM Svensk ekonomisk zon Kalmar län Västervik NaN Calluna AB Swedish Meteorological and Hydrological Instit... http://sharkweb.smhi.se, http://sharkdata.se SHARK_PhysicalChemical_2014_KAL_CALLUN SHARK_PhysicalChemical_2014_KAL_CALLUN_version...
4 Physical and Chemical Klar Leverantör och Datavärd 2014 7798 1718 NaN V1-V V1-V REG Kalmar KVK ... HELCOM Svensk ekonomisk zon Kalmar län Västervik NaN Calluna AB Swedish Meteorological and Hydrological Instit... http://sharkweb.smhi.se, http://sharkdata.se SHARK_PhysicalChemical_2014_KAL_CALLUN SHARK_PhysicalChemical_2014_KAL_CALLUN_version...

5 rows × 125 columns


In [11]:
def myfunc(x): 
    value = str(x[0]) + str(x[1]) 
    if value == '201477K9':
        print(x['visit_year'])
    return value


df['test'] = df[['visit_year', 'platform_code']].apply(myfunc, axis=1)


2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014

In [9]:
df['test'].head()


Out[9]:
0    201477K9
1    20147798
2    20147798
3    20147798
4    20147798
Name: test, dtype: object

In [ ]:


In [ ]:


In [ ]:


In [ ]: