In [1]:
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import glob
In [2]:
%matplotlib inline
In [3]:
pd.set_option("display.max_rows", 15)
In [4]:
files = glob.glob('/Users/schriste/Dropbox/heroes_flares_lc_*.csv')
In [5]:
files
Out[5]:
In [51]:
time_ranges = ((datetime(2013,9,21,17,15,0), datetime(2013,9,21,18,0,0)),
(datetime(2013,9,21,19,15,0), datetime(2013,9,21,21,30,0)),
(datetime(2013,9,21,20,20,0), datetime(2013,9,21,21,10,0)))
In [52]:
data = pd.read_csv(files[0], parse_dates=True, header=0, index_col=0)
In [53]:
data = data.truncate(before=time_ranges[0][0], after = time_ranges[0][1])
In [61]:
plt.figure()
data.plot()
plt.title('Original data')
plt.show()
In [60]:
resample_rate = '16S'
for file, time_range in zip(files, time_ranges):
data = pd.read_csv(file, parse_dates=True, header=0, index_col=0)
data = data.truncate(before=time_range[0], after=time_range[1])
plt.figure()
max = 0
for col in data.columns:
data[col].resample(resample_rate, how='sum').plot()
if max < data[col].resample(resample_rate, how='sum').max():
max = data[col].resample(resample_rate, how='sum').max()
plt.vlines(datetime(2013,9,21,17,25,0), 0, max, linestyle = 'dashed', label='start')
plt.vlines(datetime(2013,9,21,17,45,0), 0, max, linestyle = 'dashed', label='end')
plt.title(file)
plt.ylim((-100,max*1.1))
plt.legend(loc='upper left')
plt.show()