Algorithms Exercise 3

Imports


In [8]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np

In [9]:
from IPython.html.widgets import interact


:0: FutureWarning: IPython widgets are experimental and may change in the future.

Character counting and entropy

Write a function char_probs that takes a string and computes the probabilities of each character in the string:

  • First do a character count and store the result in a dictionary.
  • Then divide each character counts by the total number of character to compute the normalized probabilties.
  • Return the dictionary of characters (keys) and probabilities (values).

In [13]:
def char_probs(s):
    """Find the probabilities of the unique characters in the string s.
    
    Parameters
    ----------
    s : str
        A string of characters.
    
    Returns
    -------
    probs : dict
        A dictionary whose keys are the unique characters in s and whose values
        are the probabilities of those characters.
    """
    dictionary = {}
    for n in s:
        dictionary[n]= (s.count(n))/len(s)
    return dictionary


Out[13]:
{'a': 0.8, 'b': 0.2}

In [14]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)

The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:

$$H = - \Sigma_i P_i \log_2(P_i)$$

In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.

Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.

To compute the entropy, you should:

  • First convert the values (probabilities) of the dict to a Numpy array of probabilities.
  • Then use other Numpy functions (np.log2, etc.) to compute the entropy.
  • Don't use any for or while loops in your code.

In [92]:
def entropy(d):
    """Compute the entropy of a dict d whose values are probabilities."""
    """Return a list of 2-tuples of (word, count), sorted by count descending."""
    #t = np.array(d)
    #t = np.sort(t)
    H = 0
    l = [(i,d[i]) for i in d]
    t = sorted(l, key = lambda x:x[1], reverse = True)
    for n in t:
        H = H + (n[1])*np.log2(n[1])
    #t = char_probs(t)*np.log2(char_probs(t))
    return -H
entropy({'a': 0.5, 'b': 0.5})


Out[92]:
1.0

In [93]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)

Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.


In [102]:
def z(x):
    print(entropy(char_probs(x)))
    return entropy(char_probs(x))

In [103]:
interact(z, x='string');


1.0

In [ ]:
assert True # use this for grading the pi digits histogram