In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns

In [4]:
import numpy as np

In [5]:
data = [111,2,4,6]
a = np.array(data)

In [9]:
a.shape


Out[9]:
(4,)

In [12]:
a.ndim


Out[12]:
1

In [13]:
a.size


Out[13]:
4

In [15]:
a.nbytes


Out[15]:
32

In [16]:
a.dtype


Out[16]:
dtype('int64')

In [18]:
data = [[1,2,3,4],['a','b','c','d']]
b = np.array(data)

In [19]:
b


Out[19]:
array([['1', '2', '3', '4'],
       ['a', 'b', 'c', 'd']], 
      dtype='<U21')

In [20]:
b.size


Out[20]:
8

In [21]:
b.shape


Out[21]:
(2, 4)

In [22]:
b.nbytes


Out[22]:
672

In [43]:
e = np.linspace(1, 10, 5)

In [44]:
e


Out[44]:
array([  1.  ,   3.25,   5.5 ,   7.75,  10.  ])

In [46]:
a = np.ones((3,3))

In [47]:
a


Out[47]:
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

In [48]:
6*a


Out[48]:
array([[ 6.,  6.,  6.],
       [ 6.,  6.,  6.],
       [ 6.,  6.,  6.]])

In [49]:
a


Out[49]:
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

In [2]:
import antipackage
from github.ellisonbg.misc import vizarray as va


Downloading:  https://raw.githubusercontent.com/ellisonbg/misc/master/vizarray.py
Using existing version:  github.ellisonbg.misc.vizarray

In [110]:
a = np.random.randint(0,10,(10,10))

In [ ]:
a = np.random.rand

In [111]:
a


Out[111]:
array([[9, 2, 8, 4, 9, 1, 8, 0, 4, 8],
       [6, 9, 7, 7, 5, 1, 9, 4, 0, 7],
       [6, 4, 7, 5, 6, 6, 8, 3, 6, 9],
       [1, 7, 0, 9, 9, 0, 0, 8, 4, 1],
       [2, 3, 3, 3, 1, 0, 5, 0, 4, 9],
       [6, 3, 1, 2, 1, 1, 0, 6, 8, 0],
       [1, 5, 6, 3, 0, 3, 1, 5, 9, 0],
       [4, 3, 7, 9, 7, 0, 1, 5, 9, 6],
       [8, 0, 5, 3, 4, 4, 9, 1, 8, 7],
       [2, 8, 1, 7, 6, 1, 9, 5, 2, 2]])

In [95]:
va.vizarrray(a)


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-95-16c3e1826f32> in <module>()
----> 1 va.vizarrray(a)

AttributeError: 'module' object has no attribute 'vizarrray'

In [101]:
va.disable()

In [103]:
np.set_printoptions(precision=2)

In [104]:
a


Out[104]:
array([[ 0.8 ,  0.98,  0.89,  0.16,  0.66,  0.67,  1.  ,  0.16,  0.99,
         0.57],
       [ 2.59,  2.16,  2.69,  1.1 ,  2.26,  1.67,  2.55,  0.82,  2.64,
         1.32],
       [ 0.95,  0.39,  0.19,  0.44,  0.79,  0.76,  0.48,  0.68,  0.86,
         0.22],
       [ 0.22,  0.99,  0.13,  0.95,  0.72,  0.88,  0.84,  0.88,  0.52,
         0.45],
       [ 0.79,  0.36,  0.51,  0.89,  0.71,  0.31,  0.93,  0.31,  0.6 ,
         0.96],
       [ 0.68,  0.85,  0.54,  0.31,  0.63,  0.81,  0.47,  0.59,  0.08,
         0.69],
       [ 0.86,  0.31,  0.36,  0.73,  0.25,  0.72,  0.33,  0.72,  0.18,
         0.62],
       [ 0.94,  0.62,  0.49,  0.52,  0.91,  0.49,  0.36,  0.09,  0.77,
         0.62],
       [ 0.57,  0.76,  0.66,  0.07,  0.89,  0.98,  0.77,  0.15,  0.9 ,
         0.38],
       [ 0.67,  0.87,  0.58,  0.01,  0.18,  0.11,  0.26,  0.27,  0.63,
         0.47]])

In [98]:
a[0,0]


Out[98]:
0.80001370524296767

In [100]:
a[1,:] = a[1,:] + a[0,:]
a


Out[100]:

In [ ]: