In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
from utils_io import read_json
params = read_json('parameters.json')
RESIZE_X = params['resize']['x']
RESIZE_Y = params['resize']['y']
ITEM_FOLDER = params['item_folder']
In [ ]:
bin_stamp = '170405145336'
contents = ["Colgate_Toothbrush_4PK","Epsom_Salts","Duct_Tape",
"Bath_Sponge","Crayons","Burts_Bees_Baby_Wipes"]
In [ ]:
bin_stamp = '170405145538'
contents = ["glue_sticks","tissue_box","laugh_out_loud_jokes",
"toilet_brush","expo_eraser","table_cloth"]
In [ ]:
bin_stamp = '170508103814'
contents = ["mouse_traps","composition_book","tennis_ball_container",
"tissue_box"]
In [ ]:
bin_stamp = '170508105421'
contents = ["mouse_traps","composition_book","tennis_ball_container",
"tissue_box"]
In [ ]:
bin_stamp = '170508105808'
contents = ["laugh_out_loud_jokes","reynolds_wrap","robots_dvd",
"hanes_socks", "flashlight"]
In [ ]:
items = [s.lower() for s in contents]
In [ ]:
from utils_io import imread_rgb
from utils_sift import compute_sift
filename_bin = 'bin/' + bin_stamp + '.png'
image_bin = imread_rgb(filename_bin)
(kp_bin, des_bin) = compute_sift(image_bin)
In [ ]:
from utils_sift import match_items
item_d, recognised_items, mask_items = match_items(image_bin, kp_bin, des_bin, items)
In [ ]:
plt.imshow(mask_items,cmap='gray'), plt.axis('off');
In [ ]:
from utils_io import imwrite
filename_mask = 'bin/' + bin_stamp + '_item_mask.pgm'
imwrite(filename_mask, mask_items)
In [ ]:
from utils_io import write_json
filename_items = 'bin/' + bin_stamp + '_items.json'
serial_data = [(name, proj.tolist()) for name, proj in recognised_items]
write_json(filename_items, serial_data)
In [ ]: