In [1]:
import cv2, numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
In [2]:
from utils import read_json
params = read_json('parameters.json')
RESIZE_X = params['resize']['x']
RESIZE_Y = params['resize']['y']
ITEM_FOLDER = params['item_folder']
In [3]:
bin_stamp = '170405145336'
contents = ["Colgate_Toothbrush_4PK","Epsom_Salts","Duct_Tape",
"Bath_Sponge","Crayons","Burts_Bees_Baby_Wipes"]
In [4]:
bin_stamp = '170405145538'
contents = ["glue_sticks","tissue_box","laugh_out_loud_jokes",
"toilet_brush","expo_eraser","table_cloth"]
In [5]:
contents = [s.lower() for s in contents]
In [6]:
from utils import imread_rgb, compute_sift, draw_keypoints
filename_bin = 'bin/' + bin_stamp + '.png'
image_bin = imread_rgb(filename_bin)
(kp_bin, des_bin) = compute_sift(image_bin)
print('%d features detected in bin' % len(kp_bin))
draw_keypoints(image_bin,kp_bin)
In [6]:
from utils import textured_mask
tx_mask = textured_mask(image_bin, kp_bin)
tx_image = cv2.bitwise_and(image_bin, image_bin, mask=tx_mask)
non_tx_image = cv2.bitwise_and(image_bin, image_bin, mask=255-tx_mask)
plt.subplot(121), plt.imshow(tx_image), plt.axis('off'), plt.title('textured');
plt.subplot(122), plt.imshow(non_tx_image), plt.axis('off'), plt.title('non textured');
In [ ]:
(kp_bin, des_bin) = compute_sift(image_bin, mask=tx_mask)
print('%d features detected in bin' % len(kp_bin))
draw_keypoints(image_bin,kp_bin)
In [7]:
from utils import read_features_from_file, read_bbox_from_file, unpack_keypoint, calc_matches
items = list(contents)
In [8]:
item_d = {}
recognised_items = []
image_disp = image_bin.copy()
mask_bin = np.zeros(image_bin.shape[0:2]).astype('uint8')
for item in items:
prefix = ITEM_FOLDER + '/' + item + '/' + item
filename = prefix + '_top_01_sift.npy'
kp, des = read_features_from_file(filename)
kp, des = unpack_keypoint(kp, des)
des = des.astype('float32')
good = calc_matches(des, des_bin)
item_d[item] = {'file': filename, 'kp': kp, 'des': des, 'good': good}
filename = prefix + '_bottom_01_sift.npy'
kp, des = read_features_from_file(filename)
kp, des = unpack_keypoint(kp, des)
des = des.astype('float32')
good = calc_matches(des, des_bin)
if len(good) > len(item_d[item]['good']):
item_d[item] = {'file': filename, 'kp': kp, 'des': des, 'good': good}
print('Item: "%s" Good features: %d' % (item_d[item]['file'],
len(item_d[item]['good'])))
MIN_MATCH_COUNT=10
kp = item_d[item]['kp']
good = item_d[item]['good']
if len(good) > MIN_MATCH_COUNT:
dst_pts = [ kp_bin[m.trainIdx] for m in good ]
image_disp = cv2.drawKeypoints(image_disp,dst_pts,color=(0,255,0))
recognised_items.append(item)
src_pts = np.float32([ kp[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp_bin[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
#matchesMask = mask.ravel().tolist()
x, y, w, h = read_bbox_from_file(item_d[item]['file'][:-9] + '_bbox.json')
pts = np.float32([ [x,y],[x,y+h-1],[x+w-1,y+h-1],[x+w-1,y] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
cv2.polylines(image_disp,[np.int32(dst)],True,(0,255,0),2, cv2.CV_AA)
cv2.fillConvexPoly(mask_bin,np.int32(dst),(255,))
plt.imshow(image_disp), plt.axis('off');
In [9]:
plt.imshow(mask_bin,cmap='gray'), plt.axis('off');
In [10]:
(kp_bin, des_bin) = compute_sift(image_bin, mask=mask_bin)
print('%d features detected in bin' % len(kp_bin))
draw_keypoints(image_bin,kp_bin)
In [11]:
items = recognised_items
In [12]:
item_d = {}
recognised_items = []
image_disp = image_bin.copy()
mask_bin = np.zeros(image_bin.shape[0:2]).astype('uint8')
for item in items:
prefix = ITEM_FOLDER + '/' + item + '/' + item
filename = prefix + '_top_01_sift.npy'
kp, des = read_features_from_file(filename)
kp, des = unpack_keypoint(kp, des)
des = des.astype('float32')
good = calc_matches(des, des_bin)
item_d[item] = {'file': filename, 'kp': kp, 'des': des, 'good': good}
filename = prefix + '_bottom_01_sift.npy'
kp, des = read_features_from_file(filename)
kp, des = unpack_keypoint(kp, des)
des = des.astype('float32')
good = calc_matches(des, des_bin)
if len(good) > len(item_d[item]['good']):
item_d[item] = {'file': filename, 'kp': kp, 'des': des, 'good': good}
print('Item: "%s" Good features: %d' % (item_d[item]['file'],
len(item_d[item]['good'])))
MIN_MATCH_COUNT=10
kp = item_d[item]['kp']
good = item_d[item]['good']
if len(good) > MIN_MATCH_COUNT:
dst_pts = [ kp_bin[m.trainIdx] for m in good ]
image_disp = cv2.drawKeypoints(image_disp,dst_pts,color=(0,255,0))
recognised_items.append(item)
src_pts = np.float32([ kp[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp_bin[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
x, y, w, h = read_bbox_from_file(item_d[item]['file'][:-9] + '_bbox.json')
pts = np.float32([ [x,y],[x,y+h-1],[x+w-1,y+h-1],[x+w-1,y] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
cv2.polylines(image_disp,[np.int32(dst)],True,(0,255,0),2, cv2.CV_AA)
cv2.fillConvexPoly(mask_bin,np.int32(dst),(255,))
plt.imshow(image_disp), plt.axis('off');
In [13]:
for it in recognised_items:
print('%20s recognised with %d features' %(it, len(item_d[it]['good'])))
plt.imshow(mask_bin,cmap='gray'), plt.axis('off');
In [14]:
kernel = np.ones((3,3),np.uint8)
mask_bin = cv2.dilate(mask_bin,kernel,iterations = 5)
plt.imshow(mask_bin,cmap='gray'), plt.axis('off');
In [15]:
%%time
from sklearn.cluster import KMeans, MiniBatchKMeans
n_cc = 20
image_RGBA = np.dstack((image_bin, 255-mask_bin))
pixels = image_RGBA.reshape((image_RGBA.shape[0] * image_RGBA.shape[1], 4))
filtered_pixels = np.array(filter(lambda x:x[3]==255,pixels))
n, _ = filtered_pixels.shape
pixels_LAB = cv2.cvtColor(filtered_pixels[:,0:3].reshape(1,n,3),cv2.COLOR_RGB2LAB)
pixels_LAB = pixels_LAB.reshape(n,3)
clt = MiniBatchKMeans(n_clusters = n_cc)
clt.fit(pixels_LAB)
In [16]:
image = cv2.cvtColor(image_bin, cv2.COLOR_RGB2LAB)
(h_bin, w_bin) = image.shape[:2]
pixels = image.reshape((image.shape[0] * image.shape[1], 3))
labels = clt.predict(pixels)
quant = clt.cluster_centers_.astype("uint8")[labels]
quant = quant.reshape((h_bin, w_bin, 3))
quant = cv2.cvtColor(quant, cv2.COLOR_LAB2RGB)
plt.subplot(121),plt.imshow(cv2.bitwise_and(image_bin,image_bin,mask=255-mask_bin)),plt.title('Original'),plt.axis('off');
plt.subplot(122),plt.imshow(cv2.bitwise_and(quant,quant,mask=255-mask_bin)),plt.title('%d colors' % n_cc),plt.axis('off');
bin_cc = clt.cluster_centers_
In [17]:
h, _ = np.histogram(clt.predict(pixels_LAB),bins=range(n_cc+1))
plt.bar(range(n_cc), h);
In [18]:
sort_index = np.argsort(h)[::-1]
sort_index
Out[18]:
In [33]:
obj_label = sort_index[0]
d_other = [np.linalg.norm(bin_cc[obj_label,1:]-bin_cc[other,1:]) for other in sort_index]
obj_labels = [sort_index[idx] for idx,val in enumerate(d_other) if val<20]
obj_labels
Out[33]:
In [34]:
# Weighting the histogram of dominant colors
obj_hist = np.array([h[obj_l] for obj_l in obj_labels],dtype='float32')
obj_hist = obj_hist / np.sum(obj_hist)
obj_hist
Out[34]:
In [35]:
sort_index = np.array([x for x in sort_index if x not in obj_labels])
sort_index
Out[35]:
In [36]:
mask = np.zeros((h_bin, w_bin)).astype('uint8')
for val_label in obj_labels:
mask = cv2.bitwise_or( mask, ((labels==val_label).astype('uint8') * 255).reshape((h_bin, w_bin)) )
mask = cv2.bitwise_and( mask, 255-mask_bin)
plt.imshow(cv2.bitwise_and(image_bin,image_bin,mask=mask));
In [37]:
recognised_items
Out[37]:
In [38]:
items = [s for s in contents if s not in recognised_items]
items
Out[38]:
In [39]:
best_item = []
views = ['top_01','top-side_01','top-side_02','bottom_01','bottom-side_01','bottom-side_02']
for item in items:
for view in views:
try:
filename = ITEM_FOLDER + '/' + item + '/' + item + '_' + view + '_dc.json'
dc = read_json(filename)
hist = dc['hist']
obj_cc = dc['cluster_centers']
sum_h = 0
for i in range(5):
d_bin_obj = [np.linalg.norm(obj_cc[i]-bin_cc[obj_l,:]) for obj_l in obj_labels]
index_min = np.argmin(d_bin_obj)
if d_bin_obj[index_min] < 25:
sum_h += hist[i] * obj_hist[index_min]
#if min([np.linalg.norm(obj_cc[i]-bin_cc[obj_l,:]) for obj_l in obj_labels]) < 25:
# sum_h += hist[i]
if sum_h > 0:
best_item.append((sum_h,item,view))
except IOError:
pass
best_item = sorted(best_item,reverse=True)
best_item
Out[39]:
In [60]:
#recognised_items.append(best_item[0][1])
In [ ]: