In [16]:
%%bash
conda install pandas_datareader pytables
Fetching package metadata .........
Solving package specifications: ..........
Package plan for installation in environment /opt/conda:
The following packages will be downloaded:
package | build
---------------------------|-----------------
llvmlite-0.11.0 | py35_0 7.0 MB
numpy-1.11.1 | py35_0 6.1 MB
h5py-2.6.0 | np111py35_1 2.6 MB
numba-0.26.0 | np111py35_0 2.1 MB
numexpr-2.6.0 | np111py35_0 357 KB
scipy-0.17.1 | np111py35_1 29.6 MB
pandas-0.18.1 | np111py35_0 14.1 MB
pytables-3.2.2 | np111py35_4 3.6 MB
scikit-learn-0.17.1 | np111py35_2 8.7 MB
statsmodels-0.6.1 | np111py35_1 5.2 MB
matplotlib-1.5.1 | np111py35_0 8.4 MB
scikit-image-0.12.3 | np111py35_1 26.6 MB
------------------------------------------------------------
Total: 114.2 MB
The following NEW packages will be INSTALLED:
pytables: 3.2.2-np111py35_4
The following packages will be UPDATED:
h5py: 2.6.0-np110py35_1 --> 2.6.0-np111py35_1
llvmlite: 0.8.0-py35_0 --> 0.11.0-py35_0
matplotlib: 1.5.1-np110py35_0 --> 1.5.1-np111py35_0
numba: 0.23.1-np110py35_0 --> 0.26.0-np111py35_0
numexpr: 2.5.2-np110py35_1 --> 2.6.0-np111py35_0
numpy: 1.10.4-py35_blas_openblas_201 conda-forge [blas_openblas] --> 1.11.1-py35_0
scikit-image: 0.11.3-np110py35_0 --> 0.12.3-np111py35_1
statsmodels: 0.6.1-np110py35_0 conda-forge --> 0.6.1-np111py35_1
The following packages will be SUPERCEDED by a higher-priority channel:
pandas: 0.18.1-np110py35_0 conda-forge --> 0.18.1-np111py35_0
scikit-learn: 0.17.1-np110py35_blas_openblas_200 conda-forge [blas_openblas] --> 0.17.1-np111py35_2
scipy: 0.17.1-np110py35_blas_openblas_200 conda-forge [blas_openblas] --> 0.17.1-np111py35_1
Proceed ([y]/n)?
Fetching packages ...
llvmlite-0.11. 100% |###############################| Time: 0:00:03 1.98 MB/s
numpy-1.11.1-p 100% |###############################| Time: 0:00:03 1.72 MB/s
h5py-2.6.0-np1 100% |###############################| Time: 0:00:02 1.25 MB/s
numba-0.26.0-n 100% |###############################| Time: 0:00:02 1.05 MB/s
numexpr-2.6.0- 100% |###############################| Time: 0:00:00 412.88 kB/s
scipy-0.17.1-n 100% |###############################| Time: 0:00:10 2.99 MB/s
pandas-0.18.1- 100% |###############################| Time: 0:00:05 2.59 MB/s
pytables-3.2.2 100% |###############################| Time: 0:00:02 1.42 MB/s
scikit-learn-0 100% |###############################| Time: 0:00:04 2.25 MB/s
statsmodels-0. 100% |###############################| Time: 0:00:03 1.75 MB/s
matplotlib-1.5 100% |###############################| Time: 0:00:04 1.89 MB/s
scikit-image-0 100% |###############################| Time: 0:00:09 3.00 MB/s
Extracting packages ...
[ COMPLETE ]|##################################################| 100%
Unlinking packages ...
[ COMPLETE ]|##################################################| 100%
Linking packages ...
[ COMPLETE ]|##################################################| 100%
In [21]:
%matplotlib inline
import matplotlib
matplotlib.rcParams['figure.figsize'] = (19, 8)
In [25]:
from lmk.ticker import Ticker
ticker = Ticker("000001.SS")
# The Grand Stock Market Bubble
ticker.retrieve_history("2015-02-01", "2015-09-30")
ticker.visualize("V,C,CL,LMK,WM,PV")
Content source: dyno/LMK
Similar notebooks: