TensorFlow is a way of representing computation without actually performing it until asked. In this sense, it is a form of lazy computing, and it allows for some great improvements to the running of code:
In [1]:
    
import tensorflow as tf
x = tf.constant(35, name='x')
y = tf.Variable(x + 5, name='y')
print(y)
    
    
In [2]:
    
x = tf.constant(35, name='x')
y = tf.Variable(x + 5, name='y')
model = tf.initialize_all_variables()
with tf.Session() as session:
    session.run(model)
    print(session.run(y))
    
    
In [3]:
    
import tensorflow as tf
x = tf.constant([35, 40, 45], name='x')
y = tf.Variable(x + 5, name='y')
model = tf.initialize_all_variables()
with tf.Session() as session:
	session.run(model)
	print(session.run(y))
    
    
In [16]:
    
import numpy as np
x=np.random.rand(10)
y=tf.Variable(5*x**2,name='y')
model = tf.initialize_all_variables()
with tf.Session() as session:
    session.run(model)
    print(session.run(y))
    
    
In [26]:
    
import tensorflow as tf
x = tf.constant(35, name='x')
print(x)
y = tf.Variable(x + 5, name='y')
with tf.Session() as session:
    merged = tf.merge_all_summaries()
    writer = tf.train.SummaryWriter("", session.graph)
    model = tf.initialize_all_variables()
    session.run(model)
    print(session.run(y))
    
    
In [20]:
    
import matplotlib.image as mpimg
# First, load the image
filename = "MarshOrchid.jpg"
image = mpimg.imread(filename)
# Print out its shape
print(image.shape)
    
    
In [21]:
    
import matplotlib.pyplot as plt
plt.imshow(image)
plt.show()
    
    
In [25]:
    
import tensorflow as tf
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
# First, load the image again
filename = "MarshOrchid.jpg"
image = mpimg.imread(filename)
# Create a TensorFlow Variable
x = tf.Variable(image, name='x')
model = tf.initialize_all_variables()
with tf.Session() as session:
    x = tf.transpose(x, perm=[1, 0, 2])
    session.run(model)
    result = session.run(x)
plt.imshow(result)
plt.show()
    
    
In [ ]: