In [1]:
import sympy
ha = qubit('a', latex_label='\\alpha', dtype=sympy)
hb = qubit('b', latex_label='\\beta', dtype=sympy)
sympy.var('x,y')


Out[1]:
$$\begin{pmatrix}x, & y\end{pmatrix}$$

In [2]:
U=x*ha.fourier()
U


Out[2]:
$\scriptsize{\left< 0_{\alpha} \right|}$$\scriptsize{\left< 1_{\alpha} \right|}$
$\scriptsize{\left| 0_{\alpha} \right>}$$\frac{1}{2} \sqrt{2} x$$\frac{1}{2} \sqrt{2} x$
$\scriptsize{\left| 1_{\alpha} \right>}$$\frac{1}{2} \sqrt{2} x$$- \frac{1}{2} \sqrt{2} x$

In [3]:
s = ha.array([1, x])
t = hb.array([1, y])
rho = (s*t).O
rho


Out[3]:
$\scriptsize{\left< 0_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 0_{\alpha}1_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}1_{\beta} \right|}$
$\scriptsize{\left| 0_{\alpha}0_{\beta} \right>}$$1$$\overline{y}$$\overline{x}$$\overline{x} \overline{y}$
$\scriptsize{\left| 0_{\alpha}1_{\beta} \right>}$$y$$y \overline{y}$$y \overline{x}$$y \overline{x} \overline{y}$
$\scriptsize{\left| 1_{\alpha}0_{\beta} \right>}$$x$$x \overline{y}$$x \overline{x}$$x \overline{x} \overline{y}$
$\scriptsize{\left| 1_{\alpha}1_{\beta} \right>}$$x y$$x y \overline{y}$$x y \overline{x}$$x y \overline{x} \overline{y}$

In [4]:
U = (ha * hb).eye() 
# arrays can be indexed using dictionaries
U[{ ha: 0, ha.H: 0, hb: 0, hb.H: 0 }] = x 
U[{ ha: 0, ha.H: 0, hb: 0, hb.H: 1 }] = y 
U


Out[4]:
$\scriptsize{\left< 0_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 0_{\alpha}1_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}1_{\beta} \right|}$
$\scriptsize{\left| 0_{\alpha}0_{\beta} \right>}$$x$$y$00
$\scriptsize{\left| 0_{\alpha}1_{\beta} \right>}$0$1$00
$\scriptsize{\left| 1_{\alpha}0_{\beta} \right>}$00$1$0
$\scriptsize{\left| 1_{\alpha}1_{\beta} \right>}$000$1$

In [5]:
U.I


Out[5]:
$\scriptsize{\left< 0_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 0_{\alpha}1_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}1_{\beta} \right|}$
$\scriptsize{\left| 0_{\alpha}0_{\beta} \right>}$$\frac{1}{x}$$- \frac{y}{x}$00
$\scriptsize{\left| 0_{\alpha}1_{\beta} \right>}$0$1$00
$\scriptsize{\left| 1_{\alpha}0_{\beta} \right>}$00$1$0
$\scriptsize{\left| 1_{\alpha}1_{\beta} \right>}$000$1$

In [6]:
U * U.I


Out[6]:
$\scriptsize{\left< 0_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 0_{\alpha}1_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}0_{\beta} \right|}$$\scriptsize{\left< 1_{\alpha}1_{\beta} \right|}$
$\scriptsize{\left| 0_{\alpha}0_{\beta} \right>}$$1$000
$\scriptsize{\left| 0_{\alpha}1_{\beta} \right>}$0$1$00
$\scriptsize{\left| 1_{\alpha}0_{\beta} \right>}$00$1$0
$\scriptsize{\left| 1_{\alpha}1_{\beta} \right>}$000$1$

In [7]:
ha


Out[7]:
$\left| \alpha \right\rangle$

In [ ]: