In [1]:
import sympy
ha = qubit('a', latex_label='\\alpha', dtype=sympy)
hb = qubit('b', latex_label='\\beta', dtype=sympy)
sympy.var('x,y')
Out[1]:
In [2]:
U=x*ha.fourier()
U
Out[2]:
In [3]:
s = ha.array([1, x])
t = hb.array([1, y])
rho = (s*t).O
rho
Out[3]:
In [4]:
U = (ha * hb).eye()
# arrays can be indexed using dictionaries
U[{ ha: 0, ha.H: 0, hb: 0, hb.H: 0 }] = x
U[{ ha: 0, ha.H: 0, hb: 0, hb.H: 1 }] = y
U
Out[4]:
In [5]:
U.I
Out[5]:
In [6]:
U * U.I
Out[6]:
In [7]:
ha
Out[7]:
In [ ]: