In [17]:
import psycopg2
import pandas as pd
import sqlalchemy as sa
from sqlalchemy import *

In [18]:
user_name = 'USERNAME'
pw='PASSWORD'
host = "db.wiki-energy.org"
port = "5432"
db = "postgres"
connect_string = "dbname = 'postgres' host='db.wiki-energy.org'"+ " user="+user_name+" password="+pw

In [3]:
conn = psycopg2.connect(connect_string)

In [4]:
curr=conn.cursor()

In [10]:


In [12]:
curr.execute("""SELECT distinct"PecanStreet_RawData".audits_2011) from "PecanStreet_RawData".audits_2011""")


---------------------------------------------------------------------------
InternalError                             Traceback (most recent call last)
<ipython-input-12-12cb390991e1> in <module>()
----> 1 curr.execute("""SELECT "PecanStreet_RawData".audits_2011 from "PecanStreet_RawData".audits_2011""")

InternalError: current transaction is aborted, commands ignored until end of transaction block

In [6]:
audit_2011 = pd.DataFrame(curr.fetchall())


---------------------------------------------------------------------------
ProgrammingError                          Traceback (most recent call last)
<ipython-input-6-65e464f3f07b> in <module>()
----> 1 audit_2011 = pd.DataFrame(curr.fetchall())

ProgrammingError: no results to fetch

In [16]:
len(audit_2011.index)


Out[16]:
188

In [48]:
df = pd.io.sql.read_frame("""SELECT distinct("PecanStreet_RawData".audits_2011.dataid) from "PecanStreet_RawData".audits_2011""",conn)

In [23]:
df.head()


Out[23]:
dataid
0 744
1 8890
2 2129
3 2575
4 3834

In [5]:
rows = curr.fetchall()

In [8]:
curr.execute("""select distinct("PecanStreet_RawData".audits_2011.dataid) from "PecanStreet_RawData".audits_2011, "PecanStreet_CuratedSets".group2_disaggregated_2013_05 where  "PecanStreet_CuratedSets".group2_disaggregated_2013_05.dataid="PecanStreet_RawData".audits_2011.dataid""")

In [10]:
rows=curr.fetchall()

In [11]:
rows


Out[11]:
[(9922,),
 (94,),
 (5972,),
 (2818,),
 (9609,),
 (93,),
 (7531,),
 (9019,),
 (2864,),
 (7536,),
 (9933,),
 (739,),
 (7769,)]

In [32]:
#trying sqlalchemy engine
#url format:
#dialect+driver://username:password@host:port/database
url = "postgresql"+"://"+user_name+":"+pw+"@"+host+":"+port+"/"+db

In [33]:
engine = create_engine(url)
engine.echo=True

In [43]:
#create query 
query = """select * from "PecanStreet_RawData".audits_2011"""

In [45]:
df_eng = pd.DataFrame.from_records(engine.execute(query).fetchall())


2014-06-07 19:18:28,965 INFO sqlalchemy.engine.base.Engine select * from "PecanStreet_RawData".audits_2011
INFO:sqlalchemy.engine.base.Engine:select * from "PecanStreet_RawData".audits_2011
2014-06-07 19:18:28,966 INFO sqlalchemy.engine.base.Engine {}
INFO:sqlalchemy.engine.base.Engine:{}

In [46]:
df_eng.head()


Out[46]:
0 1 2 3 4 5 6 7 8 9 ... 301 302 303 304 305 306 307 308 309 310
0 585 3/30/2011 1 3 2008 not assessed 1720 15480 North None ... 997 1540 None 6 N/A None None None None 49
1 9933 11/3/2011 1 3 1952 unknown 1471 11768 Southeast None ... 1728 2474 None 12.6 House is primarily pier and beam which account... 0 0 0 1 93
2 9134 3/15/2011 2 3 2007 not assessed 2122 None W None ... 1396 2017 None None None None None None None 175
3 3456 4/4/2011 1 3 2008 not assessed 1720 None south None ... 1255 1274 None None CFM50 data listed. Strong/gusty winds during t... None None None None 55
4 1589 6/24/2011 1 3 1994 DAVID WEEKLEY 2426 24260 WEST None ... 2503 2413 2496 6.17 (2496 csm50 * 60) / 24260V 0 0 0 1 115

5 rows × 311 columns


In [ ]: