Contraction

$\mathbf{i}_{\alpha^{\sharp}}\beta=\star(\alpha\wedge\star\beta)$


In [1]:
from dec.symbolic import *

1D


In [2]:
c = Chart(x, )
u = Function('u')(x)
v = Function('v')(x)

In [3]:
α = form(1, c, (u,))
β = form(1, c, (v,))
α.C(β) == (α ^ β.H).H


Out[3]:
True

2D


In [4]:
c = Chart(x, y)
u = Function('u')(x, y)
v = Function('v')(x, y)
w = Function('w')(x, y)
q = Function('q')(x, y)

In [5]:
α = form(1, c, (u,v))
β = form(1, c, (w,q))
α.C(β) == (α ^ β.H).H


Out[5]:
True

In [6]:
α = form(1, c, (u,v))
β = form(2, c, (w,))
α.C(β) == (α ^ β.H).H


Out[6]:
True

3D


In [7]:
# Not implemented yet