In [14]:
import loadForecast as lf
import pandas as pd
%matplotlib inline
In [5]:
df = pd.read_csv('data/test/COAST.csv', parse_dates=['dates'])
df['year'] = df.dates.dt.year
years = [2002]
acc_dict = {}
for y in df.year.unique()[1:]:
years.append(y)
df_c = df[df['year'].isin(years)]
all_X = lf.makeUsefulDf(df_c)
all_y = df_c['load']
_, accuracy = lf.neural_net_predictions(all_X, all_y)
r = accuracy
r.update({'years': years})
acc_dict[len(years)] = r
In [10]:
y = pd.DataFrame(acc_dict).T
In [16]:
y['test'][1:].plot()
Out[16]:
In [ ]: