In [2]:
%matplotlib inline
from ipywidgets import interact
import ipywidgets as widgets
# Interactive version of drawing the Sierpinski triangle
# Doing Math with Python (Chapter 6)
'''
sierpinski.py
Draw Sierpinski Triangle
'''
import random
import matplotlib.pyplot as plt
def transformation_1(p):
x = p[0]
y = p[1]
x1 = 0.5*x
y1 = 0.5*y
return x1, y1
def transformation_2(p):
x = p[0]
y = p[1]
x1 = 0.5*x + 0.5
y1 = 0.5*y + 0.5
return x1, y1
def transformation_3(p):
x = p[0]
y = p[1]
x1 = 0.5*x + 1
y1 = 0.5*y
return x1, y1
def get_index(probability):
r = random.random()
c_probability = 0
sum_probability = []
for p in probability:
c_probability += p
sum_probability.append(c_probability)
for item, sp in enumerate(sum_probability):
if r <= sp:
return item
return len(probability)-1
def transform(p):
# list of transformation functions
transformations = [transformation_1, transformation_2, transformation_3]
probability = [1/3, 1/3, 1/3]
# pick a random transformation function and call it
tindex = get_index(probability)
t = transformations[tindex]
x, y = t(p)
return x, y
def draw_sierpinski(n):
# We start with (0, 0)
x = [0]
y = [0]
x1, y1 = 0, 0
for i in range(n):
x1, y1 = transform((x1, y1))
x.append(x1)
y.append(y1)
plt.plot(x, y, 'o')
plt.title('Sierpinski with {0} points'.format(n))
plt.show()
i = interact(draw_sierpinski, n=widgets.IntSlider(min=100, max=10000, step=1, value=10))