In [4]:
# Interactive version of the "Mandelbrot Set" - solution to challenge in
# "Doing Math with Python", chapter 6
%matplotlib inline
'''
mandelbrot.py
Draw a Mandelbrot set
Using "Escape time algorithm" from:
http://en.wikipedia.org/wiki/Mandelbrot_set#Computer_drawings
Thanks to http://www.vallis.org/salon/summary-10.html for some important
ideas for implementation.
'''
from ipywidgets import interact
import ipywidgets as widgets
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Subset of the complex plane we are considering
x0, x1 = -2.5, 1
y0, y1 = -1, 1
def initialize_image(x_p, y_p):
image = []
for i in range(y_p):
x_colors = []
for j in range(x_p):
x_colors.append(0)
image.append(x_colors)
return image
def mandelbrot_set(n, max_iterations):
image = initialize_image(n, n)
# Generate a set of equally spaced points in the region
# above
dx = (x1-x0)/(n-1)
dy = (y1-y0)/(n-1)
x_coords = [x0 + i*dx for i in range(n)]
y_coords = [y0 + i*dy for i in range(n)]
for i, x in enumerate(x_coords):
for k, y in enumerate(y_coords):
z1 = complex(0, 0)
iteration = 0
c = complex(x, y)
while (abs(z1) < 2 and iteration < max_iterations):
z1 = z1**2 + c
iteration += 1
image[k][i] = iteration
return image
def draw_mandelbrot(n, max_iterations):
image = mandelbrot_set(n, max_iterations)
plt.imshow(image, origin='lower', extent=(x0, x1, y0,y1),
cmap=cm.Greys_r, interpolation='nearest')
plt.show()
# Allow interaction via the interact() function and an Integer slider widget
i = interact(draw_mandelbrot,
n=widgets.IntSlider(min=100, max=600,step=1,value=10),
max_iterations=widgets.IntSlider(min=100, max=10000,step=1,value=10),
# This keyword argument adds a button so that the drawing happens
# only when the button is clicked
__manual=True
)
In [ ]: