In [1]:
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
mnist = input_data.read_data_sets(".", one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
In [3]:
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
In [4]:
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
In [5]:
tf.cast?
In [6]:
plt.imshow(mnist.train.images[2].reshape((28, 28)))
Out[6]:
In [7]:
sess.run(train_step, feed_dict={x: mnist.train.images[0:5], y_: mnist.train.labels[0:5]})
In [8]:
sess.run(tf.argmax(y, 1), feed_dict={x: mnist.train.images[0:10]})
Out[8]:
In [9]:
mnist.train.labels[0:10].argmax(1)
Out[9]:
In [10]:
for i in range(10):
plt.imshow(mnist.train.images[i].reshape((28, 28)))
plt.show()