In [ ]:
import pickle
pickle_file = '-data.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
X = save['X']
y = save['y']
typesList = save['typesList']
del save # hint to help gc free up memory
print('Data set', X.shape, y.shape)
In [ ]:
%matplotlib inline
from matplotlib.pyplot import imshow
import matplotlib.pyplot as plt
img_index = 0
img = X[img_index]
print "image dimensions:", img.shape
print "target category:", (typesList[y[img_index][0]])
imshow(img, cmap = plt.get_cmap('gray'), vmin = -1, vmax = 1, interpolation='nearest')
plt.axis('off')
plt.show()
In [ ]:
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
from keras import backend as K
In [ ]:
# number of classes
num_classes = 3
# image dimensions
img_rows, img_cols = X.shape[1], X.shape[2]
if K.image_dim_ordering() == 'th':
X = X.reshape(X.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X = X.reshape(X.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
y = np_utils.to_categorical(y, num_classes)
In [ ]:
# model hyperparameters
batch_size = 32
nb_epoch = 10
# network architecture
patch_size_1 = 3
patch_size_2 = 3
depth_1 = 32
depth_2 = 32
pool_size = 2
num_hidden_1 = 64
num_hidden_2 = 64
dropout = 0.5
In [ ]:
model = Sequential()
model.add(Convolution2D(depth_1, patch_size_1, patch_size_1,
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(pool_size, pool_size)))
model.add(Convolution2D(depth_2, patch_size_2, patch_size_2, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(pool_size, pool_size)))
model.add(Flatten())
model.add(Dense(num_hidden_1))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_hidden_2))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
In [ ]:
checkpoint_name = "-model.hdf5"
checkpointer = ModelCheckpoint(checkpoint_name, verbose=0, save_best_only=True)
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
history = model.fit(X, y, validation_split=0.3, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, callbacks=[checkpointer])
In [ ]:
print(history.history.keys())
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model loss')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.show()