In [1]:
using TimeSeries
using Quandl
data = quandl("YAHOO/AAPL")["Adjusted Close"]
Out[1]:
In [2]:
using Gadfly
In [3]:
p = plot(x = randn(3000), Geom.histogram(bincount = 100))
Out[3]:
In [4]:
data
Out[4]:
In [5]:
using PyPlot
In [10]:
ts_length = 100
epsilon_values = randn(ts_length)
# print(epsilon_values)
# plot(epsilon_values, "b-")
plot(x=collect(1:100), y=epsilon_values, Geom.line)
Out[10]:
In [11]:
using Distributions
In [19]:
epsilon_values = rand(Laplace(), 500)
epsilon_values
Out[19]:
In [21]:
plot(x=epsilon_values, Geom.histogram)
Out[21]:
In [13]:
lp = Laplace()
Out[13]:
In [16]:
plot_histogram(lp, 500)
In [22]:
hist(lp)
In [13]:
hist(epsilon_values)
Out[13]:
In [ ]: