In [37]:
%matplotlib inline
import numpy as np
import pandas as pd
from hagelslag.evaluation import DistributedROC, DistributedReliability
from hagelslag.evaluation.MetricPlotter import roc_curve, performance_diagram, attributes_diagram
from hagelslag.data import ModelOutput
from IPython.display import Image
import os
from datetime import datetime, timedelta
import seaborn as sns
import matplotlib.pyplot as plt
from glob import glob
from netCDF4 import Dataset

In [2]:
merged_path = "/glade/scratch/dgagne/track_forecasts_ncar_2016_merged/"
track_files = sorted(os.listdir(merged_path))
merged_data = {}
members = []
for track_file in track_files:
    print(track_file)
    member = track_file.split("_")[4]
    members.append(member)
    merged_data[member] = pd.read_csv(merged_path + track_file)


track_forecast_data_NCAR_mem10_combined.csv
track_forecast_data_NCAR_mem1_combined.csv
track_forecast_data_NCAR_mem2_combined.csv
track_forecast_data_NCAR_mem3_combined.csv
track_forecast_data_NCAR_mem4_combined.csv
track_forecast_data_NCAR_mem5_combined.csv
track_forecast_data_NCAR_mem6_combined.csv
track_forecast_data_NCAR_mem7_combined.csv
track_forecast_data_NCAR_mem8_combined.csv
track_forecast_data_NCAR_mem9_combined.csv

In [5]:
merged_data["mem1"]["Date"]



AttributeErrorTraceback (most recent call last)
<ipython-input-5-a0c328bfdcc4> in <module>()
----> 1 merged_data["mem1"]["Date"].month

/glade/u/home/dgagne/miniconda/lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr__(self, name)
   2670             if name in self._info_axis:
   2671                 return self[name]
-> 2672             return object.__getattribute__(self, name)
   2673 
   2674     def __setattr__(self, name, value):

AttributeError: 'Series' object has no attribute 'month'

In [11]:
day1_data = {}
for mem in merged_data.keys():
    fh = merged_data[mem]["Forecast_Hour"]
    date = pd.DatetimeIndex(merged_data[mem]["Date"])
    day1_data[mem] = merged_data[mem].loc[(fh >= 13) & (fh <=36) & (date.month > 4) & (date.month < 7)]

In [18]:
day1_data["mem2"]["Forecast_Hour"].hist()


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x2b5f5854d790>

In [9]:
month = pd.DatetimeIndex(day1_data["mem1"]["Date"]).month
g = sns.jointplot(x="Scale", y="Random-Forest_Scale", 
              data=day1_data["mem1"].loc[(day1_data["mem1"]["Scale"] > 0) & (month==6)],
              kind="hex", xlim=(3,10), ylim=(3,10), bins="log")
g.ax_joint.plot(np.arange(3, 10), np.arange(3,10), 'k--')


Out[9]:
[<matplotlib.lines.Line2D at 0x2b5f4d766b10>]

In [7]:
rocs = []
for mem in members:
    rocs.append(DistributedROC(thresholds=np.arange(0, 1.1, 0.1)))
    rocs[-1].update(day1_data[mem]["Random-Forest_Condition"].values, 
                    np.where(day1_data[mem]["Hail_Size"] > 0, 1, 0))

In [8]:
colors = ["r", "b", "g", "orange", "purple", "cyan", "brown", "yellowgreen", "pink", "navy"]
roc_curve(rocs, [mem + " ({0:0.2f})".format(rocs[m].auc()) for m, mem in enumerate(members)], colors, ["o"] * 10, 
          "roc.png", title="Hail Yes-No NCAR Ensemble 2016")

In [9]:
Image("roc.png")


Out[9]:

In [10]:
rel = DistributedReliability(np.arange(0, 1.05, 0.05))
rel.update(day1_data["mem1"]["Random-Forest_Condition"].values, np.where(day1_data["mem1"]["Hail_Size"] > 0, 1, 0))

In [11]:
attributes_diagram([rel], ["Random Forest {0:0.2f}".format(rel.brier_skill_score())], ["r"], ["o"], "rel.png")

In [12]:
Image("rel.png")


Out[12]:

In [4]:
sns.jointplot(merged_data["mem1"]["Centroid_Lon"], merged_data["mem1"]["Centroid_Lat"], kind="kde")


Out[4]:
<seaborn.axisgrid.JointGrid at 0x2b86a8021dd0>

In [6]:
for col in merged_data["mem1"].columns:
    print(col)


Step_ID
Track_ID
Date
Forecast_Hour
Valid_Hour_UTC
Duration
Centroid_Lon
Centroid_Lat
Storm_Motion_U
Storm_Motion_V
UP_HELI_MAX_mean
UP_HELI_MAX_max
UP_HELI_MAX_min
UP_HELI_MAX_std
UP_HELI_MAX_skew
UP_HELI_MAX_percentile_10
UP_HELI_MAX_percentile_50
UP_HELI_MAX_percentile_90
GRPL_MAX_mean
GRPL_MAX_max
GRPL_MAX_min
GRPL_MAX_std
GRPL_MAX_skew
GRPL_MAX_percentile_10
GRPL_MAX_percentile_50
GRPL_MAX_percentile_90
W_UP_MAX_mean
W_UP_MAX_max
W_UP_MAX_min
W_UP_MAX_std
W_UP_MAX_skew
W_UP_MAX_percentile_10
W_UP_MAX_percentile_50
W_UP_MAX_percentile_90
W_DN_MAX_mean
W_DN_MAX_max
W_DN_MAX_min
W_DN_MAX_std
W_DN_MAX_skew
W_DN_MAX_percentile_10
W_DN_MAX_percentile_50
W_DN_MAX_percentile_90
HAIL_MAX2D_mean
HAIL_MAX2D_max
HAIL_MAX2D_min
HAIL_MAX2D_std
HAIL_MAX2D_skew
HAIL_MAX2D_percentile_10
HAIL_MAX2D_percentile_50
HAIL_MAX2D_percentile_90
HAIL_MAXK1_mean
HAIL_MAXK1_max
HAIL_MAXK1_min
HAIL_MAXK1_std
HAIL_MAXK1_skew
HAIL_MAXK1_percentile_10
HAIL_MAXK1_percentile_50
HAIL_MAXK1_percentile_90
LTG3_MAX_mean
LTG3_MAX_max
LTG3_MAX_min
LTG3_MAX_std
LTG3_MAX_skew
LTG3_MAX_percentile_10
LTG3_MAX_percentile_50
LTG3_MAX_percentile_90
RVORT1_MAX_mean
RVORT1_MAX_max
RVORT1_MAX_min
RVORT1_MAX_std
RVORT1_MAX_skew
RVORT1_MAX_percentile_10
RVORT1_MAX_percentile_50
RVORT1_MAX_percentile_90
UP_HELI_MAX03_mean
UP_HELI_MAX03_max
UP_HELI_MAX03_min
UP_HELI_MAX03_std
UP_HELI_MAX03_skew
UP_HELI_MAX03_percentile_10
UP_HELI_MAX03_percentile_50
UP_HELI_MAX03_percentile_90
UP_HELI_MIN_mean
UP_HELI_MIN_max
UP_HELI_MIN_min
UP_HELI_MIN_std
UP_HELI_MIN_skew
UP_HELI_MIN_percentile_10
UP_HELI_MIN_percentile_50
UP_HELI_MIN_percentile_90
WSPD10MAX_mean
WSPD10MAX_max
WSPD10MAX_min
WSPD10MAX_std
WSPD10MAX_skew
WSPD10MAX_percentile_10
WSPD10MAX_percentile_50
WSPD10MAX_percentile_90
REFD_MAX_mean
REFD_MAX_max
REFD_MAX_min
REFD_MAX_std
REFD_MAX_skew
REFD_MAX_percentile_10
REFD_MAX_percentile_50
REFD_MAX_percentile_90
UBSHR1-potential_mean
UBSHR1-potential_max
UBSHR1-potential_min
UBSHR1-potential_std
UBSHR1-potential_skew
UBSHR1-potential_percentile_10
UBSHR1-potential_percentile_50
UBSHR1-potential_percentile_90
VBSHR1-potential_mean
VBSHR1-potential_max
VBSHR1-potential_min
VBSHR1-potential_std
VBSHR1-potential_skew
VBSHR1-potential_percentile_10
VBSHR1-potential_percentile_50
VBSHR1-potential_percentile_90
UBSHR6-potential_mean
UBSHR6-potential_max
UBSHR6-potential_min
UBSHR6-potential_std
UBSHR6-potential_skew
UBSHR6-potential_percentile_10
UBSHR6-potential_percentile_50
UBSHR6-potential_percentile_90
VBSHR6-potential_mean
VBSHR6-potential_max
VBSHR6-potential_min
VBSHR6-potential_std
VBSHR6-potential_skew
VBSHR6-potential_percentile_10
VBSHR6-potential_percentile_50
VBSHR6-potential_percentile_90
PWAT-potential_mean
PWAT-potential_max
PWAT-potential_min
PWAT-potential_std
PWAT-potential_skew
PWAT-potential_percentile_10
PWAT-potential_percentile_50
PWAT-potential_percentile_90
SRH3-potential_mean
SRH3-potential_max
SRH3-potential_min
SRH3-potential_std
SRH3-potential_skew
SRH3-potential_percentile_10
SRH3-potential_percentile_50
SRH3-potential_percentile_90
LCL_HEIGHT-potential_mean
LCL_HEIGHT-potential_max
LCL_HEIGHT-potential_min
LCL_HEIGHT-potential_std
LCL_HEIGHT-potential_skew
LCL_HEIGHT-potential_percentile_10
LCL_HEIGHT-potential_percentile_50
LCL_HEIGHT-potential_percentile_90
CAPE_SFC-potential_mean
CAPE_SFC-potential_max
CAPE_SFC-potential_min
CAPE_SFC-potential_std
CAPE_SFC-potential_skew
CAPE_SFC-potential_percentile_10
CAPE_SFC-potential_percentile_50
CAPE_SFC-potential_percentile_90
CIN_SFC-potential_mean
CIN_SFC-potential_max
CIN_SFC-potential_min
CIN_SFC-potential_std
CIN_SFC-potential_skew
CIN_SFC-potential_percentile_10
CIN_SFC-potential_percentile_50
CIN_SFC-potential_percentile_90
MUCAPE-potential_mean
MUCAPE-potential_max
MUCAPE-potential_min
MUCAPE-potential_std
MUCAPE-potential_skew
MUCAPE-potential_percentile_10
MUCAPE-potential_percentile_50
MUCAPE-potential_percentile_90
UBSHR6-tendency_mean
UBSHR6-tendency_max
UBSHR6-tendency_min
UBSHR6-tendency_std
UBSHR6-tendency_skew
UBSHR6-tendency_percentile_10
UBSHR6-tendency_percentile_50
UBSHR6-tendency_percentile_90
VBSHR6-tendency_mean
VBSHR6-tendency_max
VBSHR6-tendency_min
VBSHR6-tendency_std
VBSHR6-tendency_skew
VBSHR6-tendency_percentile_10
VBSHR6-tendency_percentile_50
VBSHR6-tendency_percentile_90
REFD_MAX-tendency_mean
REFD_MAX-tendency_max
REFD_MAX-tendency_min
REFD_MAX-tendency_std
REFD_MAX-tendency_skew
REFD_MAX-tendency_percentile_10
REFD_MAX-tendency_percentile_50
REFD_MAX-tendency_percentile_90
area
eccentricity
major_axis_length
minor_axis_length
orientation
extent
Hail_Size
Shape
Location
Scale
Random-Forest_Condition
Random-Forest_Shape
Random-Forest_Location
Random-Forest_Scale
Random-Forest-CV_Shape
Random-Forest-CV_Location
Random-Forest-CV_Scale
Elastic-Net_Shape
Elastic-Net_Location
Elastic-Net_Scale

In [18]:
plt.scatter(merged_data["mem1"]["HAIL_MAXK1_max"][merged_data["mem1"]["Hail_Size"] > 0] * 1000, 
            merged_data["mem1"]["Hail_Size"][merged_data["mem1"]["Hail_Size"] > 0])


Out[18]:
<matplotlib.collections.PathCollection at 0x2b86b8761490>

In [26]:
np.count_nonzero(merged_data["mem1"]["Hail_Size"].values == 0)


Out[26]:
31897

In [32]:
total_path = "/glade/scratch/dgagne/track_data_ncar_2016_csv/"
track_total_files = sorted(glob(total_path + "track_total_NCAR_mem1*.csv"))
all_tracks = pd.concat([pd.read_csv(track_total_file) for track_total_file in track_total_files], ignore_index=True)

In [50]:
np.where(~np.isnan(all_tracks["Start_Time_Error"]))


Out[50]:
(array([ 2032,  2035,  2037, ..., 80217, 80218, 80219]),)

In [52]:
all_tracks.loc[2035]


Out[52]:
Track_ID               mem10_GRPL_MAX_20160501-0000_02_04_004
Start_Date                                2016-05-01 02:00:00
End_Date                                  2016-05-01 04:00:00
Duration                                                    3
Ensemble_Name                                            NCAR
Ensemble_Member                                         mem10
Object_Variable                                      GRPL_MAX
Obs_Track_ID                obs_mem10_20160501-0000_02_03_019
Translation_Error_X                                   10123.7
Translation_Error_Y                                   -8003.2
Start_Time_Error                                            0
End_Time_Error                                              1
Name: 2035, dtype: object

In [57]:
all_tracks["Duration"].hist(bins=np.arange(1, 20))
ax = plt.gca()
ax.set_yscale("log")



In [63]:
all_tracks["Translation_Error_X"][~np.isnan(all_tracks["Translation_Error_X"])].hist(bins=30)


Out[63]:
<matplotlib.axes._subplots.AxesSubplot at 0x2b86b8849110>

In [65]:
all_tracks["Start_Time_Error"].dropna().hist()


Out[65]:
<matplotlib.axes._subplots.AxesSubplot at 0x2b86b9d3f1d0>

In [71]:
obs_tracks = pd.read_csv("/glade/scratch/dgagne/track_data_ncar_2016_csv/track_step_obs_mem1_20160527.csv")
fore_tracks = pd.read_csv("/glade/scratch/dgagne/track_data_ncar_2016_csv/track_step_NCAR_mem1_20160527.csv")
fore_total_tracks = pd.read_csv("/glade/scratch/dgagne/track_data_ncar_2016_csv/track_total_NCAR_mem1_20160527.csv")

In [68]:
plt.scatter(obs_tracks["Centroid_Lon"], obs_tracks["Centroid_Lat"])


Out[68]:
<matplotlib.collections.PathCollection at 0x2b86ba06d0d0>

In [72]:
fore_total_tracks


Out[72]:
Track_ID Start_Date End_Date Duration Ensemble_Name Ensemble_Member Object_Variable Obs_Track_ID Translation_Error_X Translation_Error_Y Start_Time_Error End_Time_Error
0 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 01:00:00 2016-05-27 05:00:00 5.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_005 -66576.96176 -63627.38781 -2.0 2.0
1 mem1_GRPL_MAX_20160527-0000_01_02_001 2016-05-27 01:00:00 2016-05-27 02:00:00 2.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_04_019 75894.39846 95580.41612 -2.0 -2.0
2 mem1_GRPL_MAX_20160527-0000_01_03_002 2016-05-27 01:00:00 2016-05-27 03:00:00 3.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
3 mem1_GRPL_MAX_20160527-0000_01_04_003 2016-05-27 01:00:00 2016-05-27 04:00:00 4.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_022 101105.17741 45964.39057 -2.0 1.0
4 mem1_GRPL_MAX_20160527-0000_01_03_004 2016-05-27 01:00:00 2016-05-27 03:00:00 3.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_025 34528.81023 35472.64677 -2.0 0.0
5 mem1_GRPL_MAX_20160527-0000_01_01_005 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
6 mem1_GRPL_MAX_20160527-0000_01_01_006 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_021 86733.57572 133844.57716 -2.0 -2.0
7 mem1_GRPL_MAX_20160527-0000_01_01_007 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
8 mem1_GRPL_MAX_20160527-0000_01_01_008 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
9 mem1_GRPL_MAX_20160527-0000_01_02_009 2016-05-27 01:00:00 2016-05-27 02:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
10 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 01:00:00 2016-05-27 07:00:00 7.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
11 mem1_GRPL_MAX_20160527-0000_01_06_011 2016-05-27 01:00:00 2016-05-27 06:00:00 6.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
12 mem1_GRPL_MAX_20160527-0000_01_01_012 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_04_031 -93698.79813 67369.61507 -2.0 -3.0
13 mem1_GRPL_MAX_20160527-0000_01_05_013 2016-05-27 01:00:00 2016-05-27 05:00:00 5.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
14 mem1_GRPL_MAX_20160527-0000_01_01_014 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
15 mem1_GRPL_MAX_20160527-0000_01_02_015 2016-05-27 01:00:00 2016-05-27 02:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
16 mem1_GRPL_MAX_20160527-0000_01_02_016 2016-05-27 01:00:00 2016-05-27 02:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
17 mem1_GRPL_MAX_20160527-0000_01_01_017 2016-05-27 01:00:00 2016-05-27 01:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
18 mem1_GRPL_MAX_20160527-0000_01_02_018 2016-05-27 01:00:00 2016-05-27 02:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
19 mem1_GRPL_MAX_20160527-0000_02_03_019 2016-05-27 02:00:00 2016-05-27 03:00:00 2.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_04_04_055 -49921.40032 -21172.09177 -2.0 -1.0
20 mem1_GRPL_MAX_20160527-0000_02_04_020 2016-05-27 02:00:00 2016-05-27 04:00:00 3.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_04_006 -22318.47868 9855.05467 -1.0 0.0
21 mem1_GRPL_MAX_20160527-0000_02_02_021 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_009 15077.38542 -69390.22999 -1.0 -1.0
22 mem1_GRPL_MAX_20160527-0000_02_02_022 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_024 7956.64897 16194.39984 -1.0 -1.0
23 mem1_GRPL_MAX_20160527-0000_02_03_023 2016-05-27 02:00:00 2016-05-27 03:00:00 2.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_04_027 22911.58540 23833.72220 -1.0 -1.0
24 mem1_GRPL_MAX_20160527-0000_02_03_024 2016-05-27 02:00:00 2016-05-27 03:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
25 mem1_GRPL_MAX_20160527-0000_02_02_025 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_03_03_032 -17987.74600 22632.23470 -1.0 -1.0
26 mem1_GRPL_MAX_20160527-0000_02_02_026 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
27 mem1_GRPL_MAX_20160527-0000_02_02_027 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
28 mem1_GRPL_MAX_20160527-0000_02_04_028 2016-05-27 02:00:00 2016-05-27 04:00:00 3.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
29 mem1_GRPL_MAX_20160527-0000_02_02_029 2016-05-27 02:00:00 2016-05-27 02:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
414 mem1_GRPL_MAX_20160527-0000_45_45_414 2016-05-28 21:00:00 2016-05-28 21:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
415 mem1_GRPL_MAX_20160527-0000_46_48_415 2016-05-28 22:00:00 2016-05-29 00:00:00 3.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
416 mem1_GRPL_MAX_20160527-0000_46_46_416 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
417 mem1_GRPL_MAX_20160527-0000_46_46_417 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
418 mem1_GRPL_MAX_20160527-0000_46_47_418 2016-05-28 22:00:00 2016-05-28 23:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
419 mem1_GRPL_MAX_20160527-0000_46_48_419 2016-05-28 22:00:00 2016-05-29 00:00:00 3.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
420 mem1_GRPL_MAX_20160527-0000_46_46_420 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
421 mem1_GRPL_MAX_20160527-0000_46_48_421 2016-05-28 22:00:00 2016-05-29 00:00:00 3.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_48_423 6281.23177 7530.05386 -1.0 0.0
422 mem1_GRPL_MAX_20160527-0000_46_48_422 2016-05-28 22:00:00 2016-05-29 00:00:00 3.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_46_46_402 -61480.72155 -12989.85051 0.0 2.0
423 mem1_GRPL_MAX_20160527-0000_46_46_423 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_45_45_379 34087.30557 -117295.81489 1.0 1.0
424 mem1_GRPL_MAX_20160527-0000_46_48_424 2016-05-28 22:00:00 2016-05-29 00:00:00 3.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_47_428 -101503.82430 23400.71297 -1.0 1.0
425 mem1_GRPL_MAX_20160527-0000_46_46_425 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_45_45_387 -3811.95214 -45830.69875 1.0 1.0
426 mem1_GRPL_MAX_20160527-0000_46_46_426 2016-05-28 22:00:00 2016-05-28 22:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
427 mem1_GRPL_MAX_20160527-0000_47_47_427 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
428 mem1_GRPL_MAX_20160527-0000_47_48_428 2016-05-28 23:00:00 2016-05-29 00:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
429 mem1_GRPL_MAX_20160527-0000_47_47_429 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
430 mem1_GRPL_MAX_20160527-0000_47_48_430 2016-05-28 23:00:00 2016-05-29 00:00:00 2.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
431 mem1_GRPL_MAX_20160527-0000_47_47_431 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
432 mem1_GRPL_MAX_20160527-0000_47_47_432 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_48_425 -24520.09536 -15754.91501 0.0 -1.0
433 mem1_GRPL_MAX_20160527-0000_47_48_433 2016-05-28 23:00:00 2016-05-29 00:00:00 2.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_48_427 -105170.65060 4811.24793 0.0 0.0
434 mem1_GRPL_MAX_20160527-0000_47_48_434 2016-05-28 23:00:00 2016-05-29 00:00:00 2.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_46_46_404 24218.76973 -35497.12619 1.0 2.0
435 mem1_GRPL_MAX_20160527-0000_47_47_435 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_48_48_451 -43219.71509 -46665.60876 -1.0 -1.0
436 mem1_GRPL_MAX_20160527-0000_47_47_436 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
437 mem1_GRPL_MAX_20160527-0000_47_47_437 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
438 mem1_GRPL_MAX_20160527-0000_47_47_438 2016-05-28 23:00:00 2016-05-28 23:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_45_45_393 -92213.13665 81579.56728 2.0 2.0
439 mem1_GRPL_MAX_20160527-0000_48_48_439 2016-05-29 00:00:00 2016-05-29 00:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_48_414 132504.51821 76327.99538 1.0 0.0
440 mem1_GRPL_MAX_20160527-0000_48_48_440 2016-05-29 00:00:00 2016-05-29 00:00:00 1.0 NCAR mem1 GRPL_MAX None NaN NaN NaN NaN
441 mem1_GRPL_MAX_20160527-0000_48_48_441 2016-05-29 00:00:00 2016-05-29 00:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_48_48_446 -54683.63633 47303.71226 0.0 0.0
442 mem1_GRPL_MAX_20160527-0000_48_48_442 2016-05-29 00:00:00 2016-05-29 00:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_48_48_454 -115305.00714 -20325.56988 0.0 0.0
443 mem1_GRPL_MAX_20160527-0000_48_48_443 2016-05-29 00:00:00 2016-05-29 00:00:00 1.0 NCAR mem1 GRPL_MAX obs_mem1_20160527-0000_47_47_438 -53536.95471 -101643.40768 1.0 1.0

444 rows × 12 columns


In [85]:
start = lambda x: x.values[-1]
obs_track_mean = obs_tracks.groupby("Obs_Track_ID")["Centroid_Lon", "Centroid_Lat"].agg(np.mean)

In [89]:
obs_tracks["Obs_Track_ID"].unique()


Out[89]:
array(['obs_mem1_20160527-0000_03_04_000',
       'obs_mem1_20160527-0000_03_04_001',
       'obs_mem1_20160527-0000_03_04_002',
       'obs_mem1_20160527-0000_03_04_003',
       'obs_mem1_20160527-0000_03_04_004',
       'obs_mem1_20160527-0000_03_03_005',
       'obs_mem1_20160527-0000_03_04_006',
       'obs_mem1_20160527-0000_03_03_007',
       'obs_mem1_20160527-0000_03_04_008',
       'obs_mem1_20160527-0000_03_03_009',
       'obs_mem1_20160527-0000_03_03_010',
       'obs_mem1_20160527-0000_03_03_011',
       'obs_mem1_20160527-0000_03_03_012',
       'obs_mem1_20160527-0000_03_03_013',
       'obs_mem1_20160527-0000_03_03_014',
       'obs_mem1_20160527-0000_03_03_015',
       'obs_mem1_20160527-0000_03_03_016',
       'obs_mem1_20160527-0000_03_03_017',
       'obs_mem1_20160527-0000_03_03_018',
       'obs_mem1_20160527-0000_03_04_019',
       'obs_mem1_20160527-0000_03_04_020',
       'obs_mem1_20160527-0000_03_03_021',
       'obs_mem1_20160527-0000_03_03_022',
       'obs_mem1_20160527-0000_03_04_023',
       'obs_mem1_20160527-0000_03_03_024',
       'obs_mem1_20160527-0000_03_03_025',
       'obs_mem1_20160527-0000_03_04_026',
       'obs_mem1_20160527-0000_03_04_027',
       'obs_mem1_20160527-0000_03_03_028',
       'obs_mem1_20160527-0000_03_03_029',
       'obs_mem1_20160527-0000_03_04_030',
       'obs_mem1_20160527-0000_03_04_031',
       'obs_mem1_20160527-0000_03_03_032',
       'obs_mem1_20160527-0000_03_03_033',
       'obs_mem1_20160527-0000_03_03_034',
       'obs_mem1_20160527-0000_03_03_035',
       'obs_mem1_20160527-0000_03_03_036',
       'obs_mem1_20160527-0000_03_03_037',
       'obs_mem1_20160527-0000_03_03_038',
       'obs_mem1_20160527-0000_03_04_039',
       'obs_mem1_20160527-0000_03_03_040',
       'obs_mem1_20160527-0000_03_03_041',
       'obs_mem1_20160527-0000_03_03_042',
       'obs_mem1_20160527-0000_03_03_043',
       'obs_mem1_20160527-0000_03_04_044',
       'obs_mem1_20160527-0000_03_03_045',
       'obs_mem1_20160527-0000_03_03_046',
       'obs_mem1_20160527-0000_03_03_047',
       'obs_mem1_20160527-0000_03_03_048',
       'obs_mem1_20160527-0000_03_03_049',
       'obs_mem1_20160527-0000_03_04_050',
       'obs_mem1_20160527-0000_03_03_051',
       'obs_mem1_20160527-0000_04_04_052',
       'obs_mem1_20160527-0000_04_04_053',
       'obs_mem1_20160527-0000_04_04_054',
       'obs_mem1_20160527-0000_04_04_055',
       'obs_mem1_20160527-0000_04_04_056',
       'obs_mem1_20160527-0000_04_04_057',
       'obs_mem1_20160527-0000_04_04_058',
       'obs_mem1_20160527-0000_04_04_059',
       'obs_mem1_20160527-0000_04_04_060',
       'obs_mem1_20160527-0000_04_04_061',
       'obs_mem1_20160527-0000_04_04_062',
       'obs_mem1_20160527-0000_04_04_063',
       'obs_mem1_20160527-0000_04_04_064',
       'obs_mem1_20160527-0000_07_07_065',
       'obs_mem1_20160527-0000_07_07_066',
       'obs_mem1_20160527-0000_07_07_067',
       'obs_mem1_20160527-0000_07_07_068',
       'obs_mem1_20160527-0000_07_08_069',
       'obs_mem1_20160527-0000_07_07_070',
       'obs_mem1_20160527-0000_07_09_071',
       'obs_mem1_20160527-0000_07_07_072',
       'obs_mem1_20160527-0000_07_08_073',
       'obs_mem1_20160527-0000_07_07_074',
       'obs_mem1_20160527-0000_07_07_075',
       'obs_mem1_20160527-0000_07_08_076',
       'obs_mem1_20160527-0000_07_07_077',
       'obs_mem1_20160527-0000_07_07_078',
       'obs_mem1_20160527-0000_07_07_079',
       'obs_mem1_20160527-0000_07_08_080',
       'obs_mem1_20160527-0000_08_08_081',
       'obs_mem1_20160527-0000_08_08_082',
       'obs_mem1_20160527-0000_08_08_083',
       'obs_mem1_20160527-0000_09_09_084',
       'obs_mem1_20160527-0000_09_12_085',
       'obs_mem1_20160527-0000_09_09_086',
       'obs_mem1_20160527-0000_09_09_087',
       'obs_mem1_20160527-0000_09_09_088',
       'obs_mem1_20160527-0000_10_10_089',
       'obs_mem1_20160527-0000_10_11_090',
       'obs_mem1_20160527-0000_10_12_091',
       'obs_mem1_20160527-0000_10_10_092',
       'obs_mem1_20160527-0000_10_10_093',
       'obs_mem1_20160527-0000_10_10_094',
       'obs_mem1_20160527-0000_10_10_095',
       'obs_mem1_20160527-0000_10_10_096',
       'obs_mem1_20160527-0000_11_11_097',
       'obs_mem1_20160527-0000_11_11_098',
       'obs_mem1_20160527-0000_11_13_099',
       'obs_mem1_20160527-0000_11_11_100',
       'obs_mem1_20160527-0000_12_12_101',
       'obs_mem1_20160527-0000_12_14_102',
       'obs_mem1_20160527-0000_12_12_103',
       'obs_mem1_20160527-0000_12_12_104',
       'obs_mem1_20160527-0000_13_13_105',
       'obs_mem1_20160527-0000_13_13_106',
       'obs_mem1_20160527-0000_13_13_107',
       'obs_mem1_20160527-0000_13_13_108',
       'obs_mem1_20160527-0000_13_13_109',
       'obs_mem1_20160527-0000_13_14_110',
       'obs_mem1_20160527-0000_14_15_111',
       'obs_mem1_20160527-0000_15_17_112',
       'obs_mem1_20160527-0000_15_15_113',
       'obs_mem1_20160527-0000_15_15_114',
       'obs_mem1_20160527-0000_15_15_115',
       'obs_mem1_20160527-0000_16_16_116',
       'obs_mem1_20160527-0000_16_16_117',
       'obs_mem1_20160527-0000_16_16_118',
       'obs_mem1_20160527-0000_16_16_119',
       'obs_mem1_20160527-0000_16_17_120',
       'obs_mem1_20160527-0000_17_17_121',
       'obs_mem1_20160527-0000_17_24_122',
       'obs_mem1_20160527-0000_17_20_123',
       'obs_mem1_20160527-0000_17_18_124',
       'obs_mem1_20160527-0000_17_17_125',
       'obs_mem1_20160527-0000_17_17_126',
       'obs_mem1_20160527-0000_17_17_127',
       'obs_mem1_20160527-0000_18_20_128',
       'obs_mem1_20160527-0000_18_19_129',
       'obs_mem1_20160527-0000_18_18_130',
       'obs_mem1_20160527-0000_18_21_131',
       'obs_mem1_20160527-0000_18_24_132',
       'obs_mem1_20160527-0000_18_18_133',
       'obs_mem1_20160527-0000_18_18_134',
       'obs_mem1_20160527-0000_19_22_135',
       'obs_mem1_20160527-0000_19_20_136',
       'obs_mem1_20160527-0000_19_19_137',
       'obs_mem1_20160527-0000_19_19_138',
       'obs_mem1_20160527-0000_19_22_139',
       'obs_mem1_20160527-0000_19_20_140',
       'obs_mem1_20160527-0000_19_19_141',
       'obs_mem1_20160527-0000_19_19_142',
       'obs_mem1_20160527-0000_20_20_143',
       'obs_mem1_20160527-0000_20_20_144',
       'obs_mem1_20160527-0000_20_21_145',
       'obs_mem1_20160527-0000_20_21_146',
       'obs_mem1_20160527-0000_20_20_147',
       'obs_mem1_20160527-0000_20_21_148',
       'obs_mem1_20160527-0000_20_20_149',
       'obs_mem1_20160527-0000_20_26_150',
       'obs_mem1_20160527-0000_20_21_151',
       'obs_mem1_20160527-0000_20_21_152',
       'obs_mem1_20160527-0000_20_22_153',
       'obs_mem1_20160527-0000_20_20_154',
       'obs_mem1_20160527-0000_20_20_155',
       'obs_mem1_20160527-0000_20_20_156',
       'obs_mem1_20160527-0000_20_21_157',
       'obs_mem1_20160527-0000_20_22_158',
       'obs_mem1_20160527-0000_20_20_159',
       'obs_mem1_20160527-0000_20_23_160',
       'obs_mem1_20160527-0000_20_20_161',
       'obs_mem1_20160527-0000_20_20_162',
       'obs_mem1_20160527-0000_20_22_163',
       'obs_mem1_20160527-0000_20_22_164',
       'obs_mem1_20160527-0000_20_20_165',
       'obs_mem1_20160527-0000_21_21_166',
       'obs_mem1_20160527-0000_21_26_167',
       'obs_mem1_20160527-0000_21_21_168',
       'obs_mem1_20160527-0000_21_22_169',
       'obs_mem1_20160527-0000_21_22_170',
       'obs_mem1_20160527-0000_21_23_171',
       'obs_mem1_20160527-0000_21_21_172',
       'obs_mem1_20160527-0000_21_21_173',
       'obs_mem1_20160527-0000_21_21_174',
       'obs_mem1_20160527-0000_21_21_175',
       'obs_mem1_20160527-0000_21_21_176',
       'obs_mem1_20160527-0000_21_23_177',
       'obs_mem1_20160527-0000_21_21_178',
       'obs_mem1_20160527-0000_21_22_179',
       'obs_mem1_20160527-0000_21_21_180',
       'obs_mem1_20160527-0000_21_21_181',
       'obs_mem1_20160527-0000_21_21_182',
       'obs_mem1_20160527-0000_21_21_183',
       'obs_mem1_20160527-0000_21_22_184',
       'obs_mem1_20160527-0000_21_22_185',
       'obs_mem1_20160527-0000_21_22_186',
       'obs_mem1_20160527-0000_21_24_187',
       'obs_mem1_20160527-0000_22_23_188',
       'obs_mem1_20160527-0000_22_24_189',
       'obs_mem1_20160527-0000_22_25_190',
       'obs_mem1_20160527-0000_22_23_191',
       'obs_mem1_20160527-0000_22_23_192',
       'obs_mem1_20160527-0000_22_28_193',
       'obs_mem1_20160527-0000_22_22_194',
       'obs_mem1_20160527-0000_22_22_195',
       'obs_mem1_20160527-0000_22_23_196',
       'obs_mem1_20160527-0000_22_24_197',
       'obs_mem1_20160527-0000_22_22_198',
       'obs_mem1_20160527-0000_22_23_199',
       'obs_mem1_20160527-0000_22_22_200',
       'obs_mem1_20160527-0000_22_22_201',
       'obs_mem1_20160527-0000_22_26_202',
       'obs_mem1_20160527-0000_22_22_203',
       'obs_mem1_20160527-0000_22_22_204',
       'obs_mem1_20160527-0000_22_23_205',
       'obs_mem1_20160527-0000_23_24_206',
       'obs_mem1_20160527-0000_23_23_207',
       'obs_mem1_20160527-0000_23_23_208',
       'obs_mem1_20160527-0000_23_23_209',
       'obs_mem1_20160527-0000_23_27_210',
       'obs_mem1_20160527-0000_23_23_211',
       'obs_mem1_20160527-0000_23_24_212',
       'obs_mem1_20160527-0000_23_23_213',
       'obs_mem1_20160527-0000_23_24_214',
       'obs_mem1_20160527-0000_23_23_215',
       'obs_mem1_20160527-0000_23_24_216',
       'obs_mem1_20160527-0000_23_23_217',
       'obs_mem1_20160527-0000_23_24_218',
       'obs_mem1_20160527-0000_23_23_219',
       'obs_mem1_20160527-0000_23_23_220',
       'obs_mem1_20160527-0000_23_23_221',
       'obs_mem1_20160527-0000_23_23_222',
       'obs_mem1_20160527-0000_23_23_223',
       'obs_mem1_20160527-0000_23_23_224',
       'obs_mem1_20160527-0000_23_25_225',
       'obs_mem1_20160527-0000_23_23_226',
       'obs_mem1_20160527-0000_23_23_227',
       'obs_mem1_20160527-0000_23_23_228',
       'obs_mem1_20160527-0000_23_23_229',
       'obs_mem1_20160527-0000_23_23_230',
       'obs_mem1_20160527-0000_23_25_231',
       'obs_mem1_20160527-0000_23_23_232',
       'obs_mem1_20160527-0000_23_23_233',
       'obs_mem1_20160527-0000_23_23_234',
       'obs_mem1_20160527-0000_23_23_235',
       'obs_mem1_20160527-0000_23_23_236',
       'obs_mem1_20160527-0000_23_23_237',
       'obs_mem1_20160527-0000_24_24_238',
       'obs_mem1_20160527-0000_24_24_239',
       'obs_mem1_20160527-0000_24_30_240',
       'obs_mem1_20160527-0000_24_28_241',
       'obs_mem1_20160527-0000_24_25_242',
       'obs_mem1_20160527-0000_24_26_243',
       'obs_mem1_20160527-0000_24_24_244',
       'obs_mem1_20160527-0000_24_24_245',
       'obs_mem1_20160527-0000_24_25_246',
       'obs_mem1_20160527-0000_24_26_247',
       'obs_mem1_20160527-0000_24_26_248',
       'obs_mem1_20160527-0000_24_24_249',
       'obs_mem1_20160527-0000_24_24_250',
       'obs_mem1_20160527-0000_24_25_251',
       'obs_mem1_20160527-0000_24_24_252',
       'obs_mem1_20160527-0000_24_25_253',
       'obs_mem1_20160527-0000_24_25_254',
       'obs_mem1_20160527-0000_24_24_255',
       'obs_mem1_20160527-0000_24_27_256',
       'obs_mem1_20160527-0000_24_26_257',
       'obs_mem1_20160527-0000_24_24_258',
       'obs_mem1_20160527-0000_24_24_259',
       'obs_mem1_20160527-0000_24_24_260',
       'obs_mem1_20160527-0000_24_24_261',
       'obs_mem1_20160527-0000_24_24_262',
       'obs_mem1_20160527-0000_25_25_263',
       'obs_mem1_20160527-0000_25_25_264',
       'obs_mem1_20160527-0000_25_25_265',
       'obs_mem1_20160527-0000_25_25_266',
       'obs_mem1_20160527-0000_25_25_267',
       'obs_mem1_20160527-0000_25_27_268',
       'obs_mem1_20160527-0000_25_25_269',
       'obs_mem1_20160527-0000_25_25_270',
       'obs_mem1_20160527-0000_25_25_271',
       'obs_mem1_20160527-0000_25_25_272',
       'obs_mem1_20160527-0000_25_25_273',
       'obs_mem1_20160527-0000_25_25_274',
       'obs_mem1_20160527-0000_25_25_275',
       'obs_mem1_20160527-0000_25_25_276',
       'obs_mem1_20160527-0000_25_26_277',
       'obs_mem1_20160527-0000_26_26_278',
       'obs_mem1_20160527-0000_26_26_279',
       'obs_mem1_20160527-0000_26_26_280',
       'obs_mem1_20160527-0000_26_27_281',
       'obs_mem1_20160527-0000_26_26_282',
       'obs_mem1_20160527-0000_26_26_283',
       'obs_mem1_20160527-0000_26_26_284',
       'obs_mem1_20160527-0000_26_26_285',
       'obs_mem1_20160527-0000_26_26_286',
       'obs_mem1_20160527-0000_26_27_287',
       'obs_mem1_20160527-0000_27_29_288',
       'obs_mem1_20160527-0000_27_27_289',
       'obs_mem1_20160527-0000_27_27_290',
       'obs_mem1_20160527-0000_27_27_291',
       'obs_mem1_20160527-0000_27_27_292',
       'obs_mem1_20160527-0000_27_27_293',
       'obs_mem1_20160527-0000_27_27_294',
       'obs_mem1_20160527-0000_27_28_295',
       'obs_mem1_20160527-0000_27_27_296',
       'obs_mem1_20160527-0000_27_27_297',
       'obs_mem1_20160527-0000_27_27_298',
       'obs_mem1_20160527-0000_27_29_299',
       'obs_mem1_20160527-0000_28_28_300',
       'obs_mem1_20160527-0000_28_28_301',
       'obs_mem1_20160527-0000_28_28_302',
       'obs_mem1_20160527-0000_28_28_303',
       'obs_mem1_20160527-0000_28_28_304',
       'obs_mem1_20160527-0000_28_28_305',
       'obs_mem1_20160527-0000_28_29_306',
       'obs_mem1_20160527-0000_29_30_307',
       'obs_mem1_20160527-0000_29_30_308',
       'obs_mem1_20160527-0000_29_29_309',
       'obs_mem1_20160527-0000_29_29_310',
       'obs_mem1_20160527-0000_29_29_311',
       'obs_mem1_20160527-0000_29_32_312',
       'obs_mem1_20160527-0000_29_32_313',
       'obs_mem1_20160527-0000_30_32_314',
       'obs_mem1_20160527-0000_30_30_315',
       'obs_mem1_20160527-0000_30_30_316',
       'obs_mem1_20160527-0000_30_30_317',
       'obs_mem1_20160527-0000_31_31_318',
       'obs_mem1_20160527-0000_31_31_319',
       'obs_mem1_20160527-0000_31_32_320',
       'obs_mem1_20160527-0000_31_32_321',
       'obs_mem1_20160527-0000_31_31_322',
       'obs_mem1_20160527-0000_32_32_323',
       'obs_mem1_20160527-0000_32_32_324',
       'obs_mem1_20160527-0000_32_32_325',
       'obs_mem1_20160527-0000_32_32_326',
       'obs_mem1_20160527-0000_34_34_327',
       'obs_mem1_20160527-0000_34_34_328',
       'obs_mem1_20160527-0000_34_34_329',
       'obs_mem1_20160527-0000_34_35_330',
       'obs_mem1_20160527-0000_34_35_331',
       'obs_mem1_20160527-0000_34_34_332',
       'obs_mem1_20160527-0000_35_35_333',
       'obs_mem1_20160527-0000_37_37_334',
       'obs_mem1_20160527-0000_37_38_335',
       'obs_mem1_20160527-0000_38_38_336',
       'obs_mem1_20160527-0000_39_39_337',
       'obs_mem1_20160527-0000_41_42_338',
       'obs_mem1_20160527-0000_41_41_339',
       'obs_mem1_20160527-0000_41_43_340',
       'obs_mem1_20160527-0000_42_43_341',
       'obs_mem1_20160527-0000_42_42_342',
       'obs_mem1_20160527-0000_42_42_343',
       'obs_mem1_20160527-0000_42_44_344',
       'obs_mem1_20160527-0000_42_44_345',
       'obs_mem1_20160527-0000_42_42_346',
       'obs_mem1_20160527-0000_43_44_347',
       'obs_mem1_20160527-0000_43_43_348',
       'obs_mem1_20160527-0000_43_43_349',
       'obs_mem1_20160527-0000_43_48_350',
       'obs_mem1_20160527-0000_43_43_351',
       'obs_mem1_20160527-0000_43_44_352',
       'obs_mem1_20160527-0000_43_44_353',
       'obs_mem1_20160527-0000_43_43_354',
       'obs_mem1_20160527-0000_43_43_355',
       'obs_mem1_20160527-0000_43_43_356',
       'obs_mem1_20160527-0000_43_43_357',
       'obs_mem1_20160527-0000_43_44_358',
       'obs_mem1_20160527-0000_44_44_359',
       'obs_mem1_20160527-0000_44_46_360',
       'obs_mem1_20160527-0000_44_44_361',
       'obs_mem1_20160527-0000_44_45_362',
       'obs_mem1_20160527-0000_44_44_363',
       'obs_mem1_20160527-0000_44_44_364',
       'obs_mem1_20160527-0000_44_48_365',
       'obs_mem1_20160527-0000_44_45_366',
       'obs_mem1_20160527-0000_44_45_367',
       'obs_mem1_20160527-0000_44_44_368',
       'obs_mem1_20160527-0000_44_46_369',
       'obs_mem1_20160527-0000_44_44_370',
       'obs_mem1_20160527-0000_44_44_371',
       'obs_mem1_20160527-0000_45_46_372',
       'obs_mem1_20160527-0000_45_46_373',
       'obs_mem1_20160527-0000_45_45_374',
       'obs_mem1_20160527-0000_45_45_375',
       'obs_mem1_20160527-0000_45_46_376',
       'obs_mem1_20160527-0000_45_48_377',
       'obs_mem1_20160527-0000_45_45_378',
       'obs_mem1_20160527-0000_45_45_379',
       'obs_mem1_20160527-0000_45_47_380',
       'obs_mem1_20160527-0000_45_47_381',
       'obs_mem1_20160527-0000_45_46_382',
       'obs_mem1_20160527-0000_45_46_383',
       'obs_mem1_20160527-0000_45_45_384',
       'obs_mem1_20160527-0000_45_45_385',
       'obs_mem1_20160527-0000_45_45_386',
       'obs_mem1_20160527-0000_45_45_387',
       'obs_mem1_20160527-0000_45_45_388',
       'obs_mem1_20160527-0000_45_46_389',
       'obs_mem1_20160527-0000_45_45_390',
       'obs_mem1_20160527-0000_45_45_391',
       'obs_mem1_20160527-0000_45_47_392',
       'obs_mem1_20160527-0000_45_45_393',
       'obs_mem1_20160527-0000_46_47_394',
       'obs_mem1_20160527-0000_46_46_395',
       'obs_mem1_20160527-0000_46_48_396',
       'obs_mem1_20160527-0000_46_48_397',
       'obs_mem1_20160527-0000_46_48_398',
       'obs_mem1_20160527-0000_46_47_399',
       'obs_mem1_20160527-0000_46_48_400',
       'obs_mem1_20160527-0000_46_46_401',
       'obs_mem1_20160527-0000_46_46_402',
       'obs_mem1_20160527-0000_46_46_403',
       'obs_mem1_20160527-0000_46_46_404',
       'obs_mem1_20160527-0000_46_47_405',
       'obs_mem1_20160527-0000_46_46_406',
       'obs_mem1_20160527-0000_46_48_407',
       'obs_mem1_20160527-0000_46_47_408',
       'obs_mem1_20160527-0000_46_46_409',
       'obs_mem1_20160527-0000_46_46_410',
       'obs_mem1_20160527-0000_46_46_411',
       'obs_mem1_20160527-0000_46_47_412',
       'obs_mem1_20160527-0000_47_48_413',
       'obs_mem1_20160527-0000_47_48_414',
       'obs_mem1_20160527-0000_47_48_415',
       'obs_mem1_20160527-0000_47_47_416',
       'obs_mem1_20160527-0000_47_48_417',
       'obs_mem1_20160527-0000_47_47_418',
       'obs_mem1_20160527-0000_47_47_419',
       'obs_mem1_20160527-0000_47_48_420',
       'obs_mem1_20160527-0000_47_48_421',
       'obs_mem1_20160527-0000_47_47_422',
       'obs_mem1_20160527-0000_47_48_423',
       'obs_mem1_20160527-0000_47_48_424',
       'obs_mem1_20160527-0000_47_48_425',
       'obs_mem1_20160527-0000_47_47_426',
       'obs_mem1_20160527-0000_47_48_427',
       'obs_mem1_20160527-0000_47_47_428',
       'obs_mem1_20160527-0000_47_47_429',
       'obs_mem1_20160527-0000_47_47_430',
       'obs_mem1_20160527-0000_47_48_431',
       'obs_mem1_20160527-0000_47_47_432',
       'obs_mem1_20160527-0000_47_48_433',
       'obs_mem1_20160527-0000_47_47_434',
       'obs_mem1_20160527-0000_47_48_435',
       'obs_mem1_20160527-0000_47_47_436',
       'obs_mem1_20160527-0000_47_48_437',
       'obs_mem1_20160527-0000_47_47_438',
       'obs_mem1_20160527-0000_48_48_439',
       'obs_mem1_20160527-0000_48_48_440',
       'obs_mem1_20160527-0000_48_48_441',
       'obs_mem1_20160527-0000_48_48_442',
       'obs_mem1_20160527-0000_48_48_443',
       'obs_mem1_20160527-0000_48_48_444',
       'obs_mem1_20160527-0000_48_48_445',
       'obs_mem1_20160527-0000_48_48_446',
       'obs_mem1_20160527-0000_48_48_447',
       'obs_mem1_20160527-0000_48_48_448',
       'obs_mem1_20160527-0000_48_48_449',
       'obs_mem1_20160527-0000_48_48_450',
       'obs_mem1_20160527-0000_48_48_451',
       'obs_mem1_20160527-0000_48_48_452',
       'obs_mem1_20160527-0000_48_48_453',
       'obs_mem1_20160527-0000_48_48_454',
       'obs_mem1_20160527-0000_48_48_455',
       'obs_mem1_20160527-0000_48_48_456'], dtype=object)

In [100]:
fore_tracks_combo = pd.merge(fore_tracks, fore_total_tracks, on="Track_ID")

In [103]:


In [112]:
mean_fore_tracks = fore_tracks.groupby("Track_ID")["Centroid_Lon", "Centroid_Lat"].agg(np.mean)
mean_fore_tracks = pd.merge(mean_fore_tracks, fore_total_tracks.loc[:, ["Track_ID", "Obs_Track_ID"]], left_index=True, right_on="Track_ID")

In [119]:
matched_tracks = pd.merge(mean_fore_tracks, obs_track_mean, left_on="Obs_Track_ID", right_index=True)

In [121]:
all_xs = []
all_ys = []
for r in matched_tracks.index:
    all_xs.extend([matched_tracks.loc[r, "Centroid_Lon_x"], matched_tracks.loc[r, "Centroid_Lon_y"], np.nan])
    all_ys.extend([matched_tracks.loc[r, "Centroid_Lat_x"], matched_tracks.loc[r, "Centroid_Lat_y"], np.nan])

In [123]:
plt.figure(figsize=(10, 6))
plt.plot(all_xs, all_ys)


Out[123]:
[<matplotlib.lines.Line2D at 0x2b86ba296ed0>]

In [129]:
(np.sqrt(fore_tracks_combo["Translation_Error_X"] ** 2 + fore_tracks_combo["Translation_Error_Y"] ** 2) / 1000.0).hist()


Out[129]:
<matplotlib.axes._subplots.AxesSubplot at 0x2b86ba6cb310>

In [139]:
unique_ids = fore_total_tracks["Obs_Track_ID"][fore_total_tracks["Obs_Track_ID"] != "None"].unique()
counts = np.zeros(unique_ids.size)
for u, unique_id in enumerate(unique_ids):
    counts[u] = np.count_nonzero(fore_total_tracks["Obs_Track_ID"] == unique_id)

In [141]:
unique_ids.size


Out[141]:
139

In [163]:
%matplotlib notebook
plt.figure(figsize=(10, 6))
rank = np.argsort(obs_tracks["MESH_max"])
plt.plot(all_xs, all_ys)
plt.scatter(obs_tracks["Centroid_Lon"][rank], obs_tracks["Centroid_Lat"][rank], 20, obs_tracks["MESH_max"][rank], 
            vmin=0, vmax=100, cmap="RdBu_r")
plt.scatter(fore_tracks["Centroid_Lon"], fore_tracks["Centroid_Lat"], 20, fore_tracks["GRPL_MAX_max"],
           vmin=0, vmax=100, cmap="PuOr", marker="v")

plt.colorbar()


Out[163]:
<matplotlib.colorbar.Colorbar at 0x2b86bbc3f2d0>

In [161]:
fore_tracks["GRPL_MAX_max"].max()


Out[161]:
86.159480000000002

In [162]:
fore_tracks


Out[162]:
Step_ID Track_ID Date Forecast_Hour Valid_Hour_UTC Duration Centroid_Lon Centroid_Lat Storm_Motion_U Storm_Motion_V ... area eccentricity major_axis_length minor_axis_length orientation extent Hail_Size Shape Location Scale
0 mem1_GRPL_MAX_20160527-0000_01_05_000_00 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 01:00:00 1.0 1.0 1.0 -99.21527 31.59660 0.0 0.0 ... 110.0 0.88891 18.28700 8.37683 -1.40204 0.57895 30.59961 2.59706 10.69980 3.87013
1 mem1_GRPL_MAX_20160527-0000_01_05_000_01 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 02:00:00 2.0 2.0 2.0 -99.05071 31.56254 12000.0 -9000.0 ... 100.0 0.44884 12.10537 10.81751 -1.51213 0.75758 30.59961 2.59706 10.69980 3.87013
2 mem1_GRPL_MAX_20160527-0000_01_05_000_02 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 03:00:00 3.0 3.0 3.0 -98.87413 31.56188 15000.0 3000.0 ... 100.0 0.85077 15.61798 8.20772 -0.20634 0.74074 30.59961 2.59706 10.69980 3.87013
3 mem1_GRPL_MAX_20160527-0000_01_05_000_03 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 04:00:00 4.0 4.0 4.0 -98.54853 31.56781 24000.0 -3000.0 ... 104.0 0.69788 13.70257 9.81402 0.17651 0.74286 30.59961 2.59706 10.69980 3.87013
4 mem1_GRPL_MAX_20160527-0000_01_05_000_04 mem1_GRPL_MAX_20160527-0000_01_05_000 2016-05-27 05:00:00 5.0 5.0 5.0 -98.20070 31.62222 30000.0 -12000.0 ... 48.0 0.85685 10.99169 5.66686 -0.40062 0.68571 30.59961 2.59706 10.69980 3.87013
5 mem1_GRPL_MAX_20160527-0000_01_02_001_00 mem1_GRPL_MAX_20160527-0000_01_02_001 2016-05-27 01:00:00 1.0 1.0 1.0 -97.69281 37.99284 0.0 0.0 ... 125.0 0.90977 22.40276 9.29991 -0.25733 0.49603 21.20020 1.87947 6.10020 3.09356
6 mem1_GRPL_MAX_20160527-0000_01_02_001_01 mem1_GRPL_MAX_20160527-0000_01_02_001 2016-05-27 02:00:00 2.0 2.0 2.0 -97.72353 38.21926 15000.0 18000.0 ... 103.0 0.82217 15.41318 8.77384 -0.36955 0.64375 23.20020 1.31535 7.19980 5.72950
7 mem1_GRPL_MAX_20160527-0000_01_03_002_00 mem1_GRPL_MAX_20160527-0000_01_03_002 2016-05-27 01:00:00 1.0 1.0 1.0 -95.90031 38.34011 0.0 0.0 ... 108.0 0.82333 15.68649 8.90307 -1.05426 0.70130 0.00000 0.00000 0.00000 0.00000
8 mem1_GRPL_MAX_20160527-0000_01_03_002_01 mem1_GRPL_MAX_20160527-0000_01_03_002 2016-05-27 02:00:00 2.0 2.0 2.0 -95.58897 38.47417 24000.0 24000.0 ... 110.0 0.83456 17.90456 9.86383 -0.36224 0.57292 0.00000 0.00000 0.00000 0.00000
9 mem1_GRPL_MAX_20160527-0000_01_03_002_02 mem1_GRPL_MAX_20160527-0000_01_03_002 2016-05-27 03:00:00 3.0 3.0 3.0 -96.04503 38.48583 -24000.0 0.0 ... 99.0 0.83412 15.21310 8.39136 -0.86738 0.58580 0.00000 0.00000 0.00000 0.00000
10 mem1_GRPL_MAX_20160527-0000_01_04_003_00 mem1_GRPL_MAX_20160527-0000_01_04_003 2016-05-27 01:00:00 1.0 1.0 1.0 -97.29626 38.42103 0.0 0.0 ... 34.0 0.78890 8.41249 5.16961 -1.17143 0.70833 59.00000 1.51449 7.49961 10.83144
11 mem1_GRPL_MAX_20160527-0000_01_04_003_01 mem1_GRPL_MAX_20160527-0000_01_04_003 2016-05-27 02:00:00 2.0 2.0 2.0 -97.16685 38.75224 15000.0 48000.0 ... 107.0 0.89318 18.91609 8.50650 -1.07701 0.51442 59.00000 1.51449 7.49961 10.83144
12 mem1_GRPL_MAX_20160527-0000_01_04_003_02 mem1_GRPL_MAX_20160527-0000_01_04_003 2016-05-27 03:00:00 3.0 3.0 3.0 -96.73741 38.80504 45000.0 9000.0 ... 105.0 0.90579 18.58325 7.87431 -0.65618 0.53846 59.00000 1.51449 7.49961 10.83144
13 mem1_GRPL_MAX_20160527-0000_01_04_003_03 mem1_GRPL_MAX_20160527-0000_01_04_003 2016-05-27 04:00:00 4.0 4.0 4.0 -95.92495 39.42321 48000.0 57000.0 ... 142.0 0.83049 25.19966 14.03702 -0.95718 0.39776 59.00000 1.51449 7.49961 10.83144
14 mem1_GRPL_MAX_20160527-0000_01_03_004_00 mem1_GRPL_MAX_20160527-0000_01_03_004 2016-05-27 01:00:00 1.0 1.0 1.0 -97.66121 38.83324 0.0 0.0 ... 113.0 0.72607 14.72501 10.12521 -1.49829 0.68485 46.79980 3.00722 16.10020 5.55225
15 mem1_GRPL_MAX_20160527-0000_01_03_004_01 mem1_GRPL_MAX_20160527-0000_01_03_004 2016-05-27 02:00:00 2.0 2.0 2.0 -97.29443 39.06435 24000.0 6000.0 ... 63.0 0.67199 10.58301 7.83735 -0.78540 0.77778 46.79980 3.00722 16.10020 5.55225
16 mem1_GRPL_MAX_20160527-0000_01_03_004_02 mem1_GRPL_MAX_20160527-0000_01_03_004 2016-05-27 03:00:00 3.0 3.0 3.0 -97.15004 39.20558 6000.0 15000.0 ... 40.0 0.92675 11.72771 4.40576 -1.13137 0.57143 46.79980 3.00722 16.10020 5.55225
17 mem1_GRPL_MAX_20160527-0000_01_01_005_00 mem1_GRPL_MAX_20160527-0000_01_01_005 2016-05-27 01:00:00 1.0 1.0 1.0 -94.22202 38.65665 0.0 0.0 ... 105.0 0.62235 13.17807 10.31504 -1.47236 0.73427 0.00000 0.00000 0.00000 0.00000
18 mem1_GRPL_MAX_20160527-0000_01_01_006_00 mem1_GRPL_MAX_20160527-0000_01_01_006 2016-05-27 01:00:00 1.0 1.0 1.0 -98.23374 38.85979 0.0 0.0 ... 66.0 0.62218 10.39109 8.13496 -1.19149 0.73333 39.29980 1.68629 9.69980 7.58964
19 mem1_GRPL_MAX_20160527-0000_01_01_007_00 mem1_GRPL_MAX_20160527-0000_01_01_007 2016-05-27 01:00:00 1.0 1.0 1.0 -95.53618 38.98014 0.0 0.0 ... 103.0 0.87089 23.11533 11.36076 -1.50064 0.40873 0.00000 0.00000 0.00000 0.00000
20 mem1_GRPL_MAX_20160527-0000_01_01_008_00 mem1_GRPL_MAX_20160527-0000_01_01_008 2016-05-27 01:00:00 1.0 1.0 1.0 -102.57968 39.21923 0.0 0.0 ... 72.0 0.81615 12.86665 7.43482 -0.92788 0.60000 0.00000 0.00000 0.00000 0.00000
21 mem1_GRPL_MAX_20160527-0000_01_02_009_00 mem1_GRPL_MAX_20160527-0000_01_02_009 2016-05-27 01:00:00 1.0 1.0 1.0 -94.33440 39.10719 0.0 0.0 ... 88.0 0.96614 24.10691 6.22008 -1.17668 0.40000 0.00000 0.00000 0.00000 0.00000
22 mem1_GRPL_MAX_20160527-0000_01_02_009_01 mem1_GRPL_MAX_20160527-0000_01_02_009 2016-05-27 02:00:00 2.0 2.0 2.0 -94.18592 38.76785 18000.0 -30000.0 ... 105.0 0.88179 17.42008 8.21619 -1.47148 0.68627 0.00000 0.00000 0.00000 0.00000
23 mem1_GRPL_MAX_20160527-0000_01_07_010_00 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 01:00:00 1.0 1.0 1.0 -94.95842 39.27034 0.0 0.0 ... 103.0 0.76616 14.60310 9.38469 -0.63749 0.71528 0.00000 0.00000 0.00000 0.00000
24 mem1_GRPL_MAX_20160527-0000_01_07_010_01 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 02:00:00 2.0 2.0 2.0 -94.95094 39.05666 9000.0 -21000.0 ... 101.0 0.85633 15.94115 8.23252 -1.22544 0.72143 0.00000 0.00000 0.00000 0.00000
25 mem1_GRPL_MAX_20160527-0000_01_07_010_02 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 03:00:00 3.0 3.0 3.0 -94.61350 39.07666 42000.0 -9000.0 ... 137.0 0.94459 26.36128 8.65281 -0.37784 0.44481 0.00000 0.00000 0.00000 0.00000
26 mem1_GRPL_MAX_20160527-0000_01_07_010_03 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 04:00:00 4.0 4.0 4.0 -94.62840 39.09164 12000.0 -15000.0 ... 19.0 0.85362 6.76306 3.52287 -0.57440 0.63333 0.00000 0.00000 0.00000 0.00000
27 mem1_GRPL_MAX_20160527-0000_01_07_010_04 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 05:00:00 5.0 5.0 5.0 -94.77990 39.57457 -21000.0 45000.0 ... 99.0 0.94368 20.63822 6.82835 -0.79479 0.41250 0.00000 0.00000 0.00000 0.00000
28 mem1_GRPL_MAX_20160527-0000_01_07_010_05 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 06:00:00 6.0 6.0 6.0 -94.55252 39.67907 24000.0 12000.0 ... 133.0 0.97396 29.34177 6.65249 -0.64604 0.30435 0.00000 0.00000 0.00000 0.00000
29 mem1_GRPL_MAX_20160527-0000_01_07_010_06 mem1_GRPL_MAX_20160527-0000_01_07_010 2016-05-27 07:00:00 7.0 7.0 7.0 -94.23470 39.80790 15000.0 6000.0 ... 65.0 0.68775 11.17137 8.10981 -0.73173 0.65000 0.00000 0.00000 0.00000 0.00000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
738 mem1_GRPL_MAX_20160527-0000_46_48_422_00 mem1_GRPL_MAX_20160527-0000_46_48_422 2016-05-28 22:00:00 46.0 22.0 1.0 -92.68474 38.00041 30000.0 60000.0 ... 69.0 0.94201 21.86272 7.33684 -1.22763 0.34500 28.09961 1.71358 6.40000 5.48600
739 mem1_GRPL_MAX_20160527-0000_46_48_422_01 mem1_GRPL_MAX_20160527-0000_46_48_422 2016-05-28 23:00:00 47.0 23.0 2.0 -92.68327 38.22593 -12000.0 30000.0 ... 54.0 0.94312 19.62745 6.52508 -0.38196 0.31765 28.09961 1.71358 6.40000 5.48600
740 mem1_GRPL_MAX_20160527-0000_46_48_422_02 mem1_GRPL_MAX_20160527-0000_46_48_422 2016-05-29 00:00:00 48.0 0.0 3.0 -92.33738 38.08455 21000.0 -21000.0 ... 82.0 0.72389 15.82884 10.92057 -0.09208 0.37104 28.09961 1.71358 6.40000 5.48600
741 mem1_GRPL_MAX_20160527-0000_46_46_423_00 mem1_GRPL_MAX_20160527-0000_46_46_423 2016-05-28 22:00:00 46.0 22.0 1.0 -87.00246 37.98042 15000.0 21000.0 ... 27.0 0.82443 7.79578 4.41217 -1.09620 0.77143 23.90039 1.13475 6.30039 9.84053
742 mem1_GRPL_MAX_20160527-0000_46_48_424_00 mem1_GRPL_MAX_20160527-0000_46_48_424 2016-05-28 22:00:00 46.0 22.0 1.0 -92.07940 39.37115 21000.0 -3000.0 ... 33.0 0.72099 7.79536 5.40176 -0.64350 0.78571 19.20020 1.07695 6.10020 5.72993
743 mem1_GRPL_MAX_20160527-0000_46_48_424_01 mem1_GRPL_MAX_20160527-0000_46_48_424 2016-05-28 23:00:00 47.0 23.0 2.0 -91.77966 39.34455 24000.0 -3000.0 ... 33.0 0.95272 11.76348 3.57431 -0.66203 0.45833 19.20020 1.07695 6.10020 5.72993
744 mem1_GRPL_MAX_20160527-0000_46_48_424_02 mem1_GRPL_MAX_20160527-0000_46_48_424 2016-05-29 00:00:00 48.0 0.0 3.0 -91.68529 39.35567 6000.0 0.0 ... 18.0 0.74910 5.86133 3.88290 -0.58682 0.72000 19.20020 1.07695 6.10020 5.72993
745 mem1_GRPL_MAX_20160527-0000_46_46_425_00 mem1_GRPL_MAX_20160527-0000_46_46_425 2016-05-28 22:00:00 46.0 22.0 1.0 -75.60593 40.81259 -6000.0 -6000.0 ... 16.0 0.85862 6.25701 3.20738 0.46105 0.66667 15.09961 1.15812 6.99961 4.39727
746 mem1_GRPL_MAX_20160527-0000_46_46_426_00 mem1_GRPL_MAX_20160527-0000_46_46_426 2016-05-28 22:00:00 46.0 22.0 1.0 -91.81593 47.70733 9000.0 24000.0 ... 19.0 0.91840 7.73686 3.06119 1.46556 0.79167 0.00000 0.00000 0.00000 0.00000
747 mem1_GRPL_MAX_20160527-0000_47_47_427_00 mem1_GRPL_MAX_20160527-0000_47_47_427 2016-05-28 23:00:00 47.0 23.0 1.0 -80.68186 25.55475 0.0 0.0 ... 22.0 0.68015 6.14652 4.50587 1.38089 0.73333 0.00000 0.00000 0.00000 0.00000
748 mem1_GRPL_MAX_20160527-0000_47_48_428_00 mem1_GRPL_MAX_20160527-0000_47_48_428 2016-05-28 23:00:00 47.0 23.0 1.0 -95.97983 29.55550 -27000.0 -18000.0 ... 39.0 0.73590 8.93477 6.04967 0.10466 0.72222 0.00000 0.00000 0.00000 0.00000
749 mem1_GRPL_MAX_20160527-0000_47_48_428_01 mem1_GRPL_MAX_20160527-0000_47_48_428 2016-05-29 00:00:00 48.0 0.0 2.0 -96.15748 29.62991 -21000.0 12000.0 ... 82.0 0.89141 17.93939 8.13017 0.70178 0.42051 0.00000 0.00000 0.00000 0.00000
750 mem1_GRPL_MAX_20160527-0000_47_47_429_00 mem1_GRPL_MAX_20160527-0000_47_47_429 2016-05-28 23:00:00 47.0 23.0 1.0 -95.94254 30.08742 9000.0 -15000.0 ... 26.0 0.87507 9.40231 4.55071 1.19664 0.54167 0.00000 0.00000 0.00000 0.00000
751 mem1_GRPL_MAX_20160527-0000_47_48_430_00 mem1_GRPL_MAX_20160527-0000_47_48_430 2016-05-28 23:00:00 47.0 23.0 1.0 -97.67246 32.54804 6000.0 -3000.0 ... 22.0 0.60971 6.68628 5.29972 -0.54557 0.61111 0.00000 0.00000 0.00000 0.00000
752 mem1_GRPL_MAX_20160527-0000_47_48_430_01 mem1_GRPL_MAX_20160527-0000_47_48_430 2016-05-29 00:00:00 48.0 0.0 2.0 -97.22455 32.82507 33000.0 18000.0 ... 43.0 0.92972 12.34192 4.54501 -0.32079 0.59722 0.00000 0.00000 0.00000 0.00000
753 mem1_GRPL_MAX_20160527-0000_47_47_431_00 mem1_GRPL_MAX_20160527-0000_47_47_431 2016-05-28 23:00:00 47.0 23.0 1.0 -91.60449 35.62336 -6000.0 21000.0 ... 29.0 0.55648 7.00517 5.82035 -0.89392 0.69048 0.00000 0.00000 0.00000 0.00000
754 mem1_GRPL_MAX_20160527-0000_47_47_432_00 mem1_GRPL_MAX_20160527-0000_47_47_432 2016-05-28 23:00:00 47.0 23.0 1.0 -92.35716 37.98266 15000.0 0.0 ... 25.0 0.65150 6.51962 4.94612 -0.37463 0.71429 38.50000 1.13504 6.80039 11.26954
755 mem1_GRPL_MAX_20160527-0000_47_48_433_00 mem1_GRPL_MAX_20160527-0000_47_48_433 2016-05-28 23:00:00 47.0 23.0 1.0 -92.56770 38.81923 12000.0 3000.0 ... 27.0 0.85970 8.26243 4.22040 -1.10245 0.67500 23.00000 1.15928 6.10020 8.39205
756 mem1_GRPL_MAX_20160527-0000_47_48_433_01 mem1_GRPL_MAX_20160527-0000_47_48_433 2016-05-29 00:00:00 48.0 0.0 2.0 -92.55438 38.77011 0.0 -6000.0 ... 41.0 0.70512 8.68666 6.15964 -0.94194 0.73214 15.90039 1.47765 6.60020 3.54370
757 mem1_GRPL_MAX_20160527-0000_47_48_434_00 mem1_GRPL_MAX_20160527-0000_47_48_434 2016-05-28 23:00:00 47.0 23.0 1.0 -85.09612 38.72612 -6000.0 -15000.0 ... 34.0 0.94178 11.80347 3.96872 -1.08940 0.48571 16.50000 1.67415 6.40000 4.24098
758 mem1_GRPL_MAX_20160527-0000_47_48_434_01 mem1_GRPL_MAX_20160527-0000_47_48_434 2016-05-29 00:00:00 48.0 0.0 2.0 -84.79608 38.82804 18000.0 6000.0 ... 35.0 0.90152 10.28845 4.45229 -1.13607 0.64815 16.50000 1.67415 6.40000 4.24098
759 mem1_GRPL_MAX_20160527-0000_47_47_435_00 mem1_GRPL_MAX_20160527-0000_47_47_435 2016-05-28 23:00:00 47.0 23.0 1.0 -81.83842 40.82559 -3000.0 0.0 ... 23.0 0.88634 9.12061 4.22317 0.31416 0.51111 15.09961 0.84705 8.19980 4.63555
760 mem1_GRPL_MAX_20160527-0000_47_47_436_00 mem1_GRPL_MAX_20160527-0000_47_47_436 2016-05-28 23:00:00 47.0 23.0 1.0 -76.22705 40.71091 -21000.0 0.0 ... 28.0 0.69177 7.17971 5.18462 -0.06972 0.80000 0.00000 0.00000 0.00000 0.00000
761 mem1_GRPL_MAX_20160527-0000_47_47_437_00 mem1_GRPL_MAX_20160527-0000_47_47_437 2016-05-28 23:00:00 47.0 23.0 1.0 -94.73226 44.41585 3000.0 24000.0 ... 17.0 0.94067 9.94969 3.37611 -1.33812 0.53125 0.00000 0.00000 0.00000 0.00000
762 mem1_GRPL_MAX_20160527-0000_47_47_438_00 mem1_GRPL_MAX_20160527-0000_47_47_438 2016-05-28 23:00:00 47.0 23.0 1.0 -83.52107 44.56459 24000.0 21000.0 ... 32.0 0.51821 8.79056 7.51817 0.25658 0.57143 9.70020 3.26076 6.30039 0.63743
763 mem1_GRPL_MAX_20160527-0000_48_48_439_00 mem1_GRPL_MAX_20160527-0000_48_48_439 2016-05-29 00:00:00 48.0 0.0 1.0 -97.74541 29.88109 -6000.0 -12000.0 ... 17.0 0.62594 5.18190 4.04120 -0.26479 0.85000 44.79980 0.95442 7.10020 17.74188
764 mem1_GRPL_MAX_20160527-0000_48_48_440_00 mem1_GRPL_MAX_20160527-0000_48_48_440 2016-05-29 00:00:00 48.0 0.0 1.0 -93.88905 34.13011 -39000.0 9000.0 ... 48.0 0.64067 12.16585 9.34109 0.12227 0.30769 0.00000 0.00000 0.00000 0.00000
765 mem1_GRPL_MAX_20160527-0000_48_48_441_00 mem1_GRPL_MAX_20160527-0000_48_48_441 2016-05-29 00:00:00 48.0 0.0 1.0 -92.83457 37.76584 18000.0 -24000.0 ... 33.0 0.61549 8.61641 6.79099 0.68014 0.51562 19.20020 2.07800 5.99961 3.97778
766 mem1_GRPL_MAX_20160527-0000_48_48_442_00 mem1_GRPL_MAX_20160527-0000_48_48_442 2016-05-29 00:00:00 48.0 0.0 1.0 -81.11217 41.45095 9000.0 9000.0 ... 30.0 0.94633 11.34915 3.66804 1.43201 0.68182 23.70020 1.24641 6.19980 5.03632
767 mem1_GRPL_MAX_20160527-0000_48_48_443_00 mem1_GRPL_MAX_20160527-0000_48_48_443 2016-05-29 00:00:00 48.0 0.0 1.0 -83.41288 43.01787 18000.0 54000.0 ... 79.0 0.96661 20.08248 5.14652 -1.09283 0.43889 17.90039 1.63597 6.30039 4.65762

768 rows × 220 columns


In [4]:
ls /glade/p/work/dgagne/ncar_coarse_neighbor_eval_2016/


coarse_neighbor_eval_NCAR_20160502.csv  coarse_neighbor_eval_NCAR_20160701.csv
coarse_neighbor_eval_NCAR_20160503.csv  coarse_neighbor_eval_NCAR_20160702.csv
coarse_neighbor_eval_NCAR_20160504.csv  coarse_neighbor_eval_NCAR_20160703.csv
coarse_neighbor_eval_NCAR_20160505.csv  coarse_neighbor_eval_NCAR_20160704.csv
coarse_neighbor_eval_NCAR_20160506.csv  coarse_neighbor_eval_NCAR_20160705.csv
coarse_neighbor_eval_NCAR_20160507.csv  coarse_neighbor_eval_NCAR_20160706.csv
coarse_neighbor_eval_NCAR_20160508.csv  coarse_neighbor_eval_NCAR_20160707.csv
coarse_neighbor_eval_NCAR_20160509.csv  coarse_neighbor_eval_NCAR_20160708.csv
coarse_neighbor_eval_NCAR_20160510.csv  coarse_neighbor_eval_NCAR_20160709.csv
coarse_neighbor_eval_NCAR_20160511.csv  coarse_neighbor_eval_NCAR_20160710.csv
coarse_neighbor_eval_NCAR_20160512.csv  coarse_neighbor_eval_NCAR_20160711.csv
coarse_neighbor_eval_NCAR_20160513.csv  coarse_neighbor_eval_NCAR_20160712.csv
coarse_neighbor_eval_NCAR_20160514.csv  coarse_neighbor_eval_NCAR_20160713.csv
coarse_neighbor_eval_NCAR_20160515.csv  coarse_neighbor_eval_NCAR_20160714.csv
coarse_neighbor_eval_NCAR_20160516.csv  coarse_neighbor_eval_NCAR_20160715.csv
coarse_neighbor_eval_NCAR_20160517.csv  coarse_neighbor_eval_NCAR_20160716.csv
coarse_neighbor_eval_NCAR_20160518.csv  coarse_neighbor_eval_NCAR_20160717.csv
coarse_neighbor_eval_NCAR_20160519.csv  coarse_neighbor_eval_NCAR_20160718.csv
coarse_neighbor_eval_NCAR_20160520.csv  coarse_neighbor_eval_NCAR_20160719.csv
coarse_neighbor_eval_NCAR_20160521.csv  coarse_neighbor_eval_NCAR_20160720.csv
coarse_neighbor_eval_NCAR_20160522.csv  coarse_neighbor_eval_NCAR_20160721.csv
coarse_neighbor_eval_NCAR_20160523.csv  coarse_neighbor_eval_NCAR_20160722.csv
coarse_neighbor_eval_NCAR_20160524.csv  coarse_neighbor_eval_NCAR_20160723.csv
coarse_neighbor_eval_NCAR_20160525.csv  coarse_neighbor_eval_NCAR_20160724.csv
coarse_neighbor_eval_NCAR_20160526.csv  coarse_neighbor_eval_NCAR_20160725.csv
coarse_neighbor_eval_NCAR_20160527.csv  coarse_neighbor_eval_NCAR_20160726.csv
coarse_neighbor_eval_NCAR_20160528.csv  coarse_neighbor_eval_NCAR_20160727.csv
coarse_neighbor_eval_NCAR_20160529.csv  coarse_neighbor_eval_NCAR_20160729.csv
coarse_neighbor_eval_NCAR_20160530.csv  coarse_neighbor_eval_NCAR_20160730.csv
coarse_neighbor_eval_NCAR_20160531.csv  coarse_neighbor_eval_NCAR_20160731.csv
coarse_neighbor_eval_NCAR_20160601.csv  coarse_neighbor_eval_NCAR_20160801.csv
coarse_neighbor_eval_NCAR_20160602.csv  coarse_neighbor_eval_NCAR_20160802.csv
coarse_neighbor_eval_NCAR_20160603.csv  coarse_neighbor_eval_NCAR_20160803.csv
coarse_neighbor_eval_NCAR_20160604.csv  coarse_neighbor_eval_NCAR_20160804.csv
coarse_neighbor_eval_NCAR_20160605.csv  coarse_neighbor_eval_NCAR_20160808.csv
coarse_neighbor_eval_NCAR_20160606.csv  coarse_neighbor_eval_NCAR_20160809.csv
coarse_neighbor_eval_NCAR_20160607.csv  coarse_neighbor_eval_NCAR_20160810.csv
coarse_neighbor_eval_NCAR_20160608.csv  coarse_neighbor_eval_NCAR_20160811.csv
coarse_neighbor_eval_NCAR_20160609.csv  coarse_neighbor_eval_NCAR_20160812.csv
coarse_neighbor_eval_NCAR_20160610.csv  coarse_neighbor_eval_NCAR_20160813.csv
coarse_neighbor_eval_NCAR_20160611.csv  coarse_neighbor_eval_NCAR_20160814.csv
coarse_neighbor_eval_NCAR_20160612.csv  coarse_neighbor_eval_NCAR_20160815.csv
coarse_neighbor_eval_NCAR_20160613.csv  coarse_neighbor_eval_NCAR_20160816.csv
coarse_neighbor_eval_NCAR_20160614.csv  coarse_neighbor_eval_NCAR_20160817.csv
coarse_neighbor_eval_NCAR_20160615.csv  coarse_neighbor_eval_NCAR_20160818.csv
coarse_neighbor_eval_NCAR_20160616.csv  coarse_neighbor_eval_NCAR_20160819.csv
coarse_neighbor_eval_NCAR_20160617.csv  coarse_neighbor_eval_NCAR_20160820.csv
coarse_neighbor_eval_NCAR_20160618.csv  coarse_neighbor_eval_NCAR_20160821.csv
coarse_neighbor_eval_NCAR_20160619.csv  coarse_neighbor_eval_NCAR_20160826.csv
coarse_neighbor_eval_NCAR_20160620.csv  coarse_neighbor_eval_NCAR_20160827.csv
coarse_neighbor_eval_NCAR_20160621.csv  coarse_neighbor_eval_NCAR_20160829.csv
coarse_neighbor_eval_NCAR_20160622.csv  coarse_neighbor_eval_NCAR_20160830.csv
coarse_neighbor_eval_NCAR_20160623.csv  coarse_neighbor_eval_NCAR_20160831.csv
coarse_neighbor_eval_NCAR_20160630.csv

In [6]:
eval_data = pd.read_csv("/glade/p/work/dgagne/ncar_coarse_neighbor_eval_2016/coarse_neighbor_eval_NCAR_20160526.csv")

In [10]:
for c in eval_data.columns:
    print(c)


i
i_small
j
j_small
lat
lon
us_mask
x
y
Run_Date
Start_Date
End_Date
MESH_Max_60min_00.50_25
MESH_Max_60min_00.50_50
MESH_Max_60min_00.50_75
NCAR_HAIL_MAX2D_mem1_5
NCAR_HAIL_MAX2D_mem1_20
NCAR_HAIL_MAX2D_mem1_25
NCAR_HAIL_MAX2D_mem1_30
NCAR_HAIL_MAX2D_mem1_35
NCAR_HAIL_MAX2D_mem1_40
NCAR_HAIL_MAX2D_mem1_45
NCAR_HAIL_MAX2D_mem1_50
NCAR_HAIL_MAX2D_mem1_75
NCAR_HAIL_MAX2D_mem2_5
NCAR_HAIL_MAX2D_mem2_20
NCAR_HAIL_MAX2D_mem2_25
NCAR_HAIL_MAX2D_mem2_30
NCAR_HAIL_MAX2D_mem2_35
NCAR_HAIL_MAX2D_mem2_40
NCAR_HAIL_MAX2D_mem2_45
NCAR_HAIL_MAX2D_mem2_50
NCAR_HAIL_MAX2D_mem2_75
NCAR_HAIL_MAX2D_mem3_5
NCAR_HAIL_MAX2D_mem3_20
NCAR_HAIL_MAX2D_mem3_25
NCAR_HAIL_MAX2D_mem3_30
NCAR_HAIL_MAX2D_mem3_35
NCAR_HAIL_MAX2D_mem3_40
NCAR_HAIL_MAX2D_mem3_45
NCAR_HAIL_MAX2D_mem3_50
NCAR_HAIL_MAX2D_mem3_75
NCAR_HAIL_MAX2D_mem4_5
NCAR_HAIL_MAX2D_mem4_20
NCAR_HAIL_MAX2D_mem4_25
NCAR_HAIL_MAX2D_mem4_30
NCAR_HAIL_MAX2D_mem4_35
NCAR_HAIL_MAX2D_mem4_40
NCAR_HAIL_MAX2D_mem4_45
NCAR_HAIL_MAX2D_mem4_50
NCAR_HAIL_MAX2D_mem4_75
NCAR_HAIL_MAX2D_mem5_5
NCAR_HAIL_MAX2D_mem5_20
NCAR_HAIL_MAX2D_mem5_25
NCAR_HAIL_MAX2D_mem5_30
NCAR_HAIL_MAX2D_mem5_35
NCAR_HAIL_MAX2D_mem5_40
NCAR_HAIL_MAX2D_mem5_45
NCAR_HAIL_MAX2D_mem5_50
NCAR_HAIL_MAX2D_mem5_75
NCAR_HAIL_MAX2D_mem6_5
NCAR_HAIL_MAX2D_mem6_20
NCAR_HAIL_MAX2D_mem6_25
NCAR_HAIL_MAX2D_mem6_30
NCAR_HAIL_MAX2D_mem6_35
NCAR_HAIL_MAX2D_mem6_40
NCAR_HAIL_MAX2D_mem6_45
NCAR_HAIL_MAX2D_mem6_50
NCAR_HAIL_MAX2D_mem6_75
NCAR_HAIL_MAX2D_mem7_5
NCAR_HAIL_MAX2D_mem7_20
NCAR_HAIL_MAX2D_mem7_25
NCAR_HAIL_MAX2D_mem7_30
NCAR_HAIL_MAX2D_mem7_35
NCAR_HAIL_MAX2D_mem7_40
NCAR_HAIL_MAX2D_mem7_45
NCAR_HAIL_MAX2D_mem7_50
NCAR_HAIL_MAX2D_mem7_75
NCAR_HAIL_MAX2D_mem8_5
NCAR_HAIL_MAX2D_mem8_20
NCAR_HAIL_MAX2D_mem8_25
NCAR_HAIL_MAX2D_mem8_30
NCAR_HAIL_MAX2D_mem8_35
NCAR_HAIL_MAX2D_mem8_40
NCAR_HAIL_MAX2D_mem8_45
NCAR_HAIL_MAX2D_mem8_50
NCAR_HAIL_MAX2D_mem8_75
NCAR_HAIL_MAX2D_mem9_5
NCAR_HAIL_MAX2D_mem9_20
NCAR_HAIL_MAX2D_mem9_25
NCAR_HAIL_MAX2D_mem9_30
NCAR_HAIL_MAX2D_mem9_35
NCAR_HAIL_MAX2D_mem9_40
NCAR_HAIL_MAX2D_mem9_45
NCAR_HAIL_MAX2D_mem9_50
NCAR_HAIL_MAX2D_mem9_75
NCAR_HAIL_MAX2D_mem10_5
NCAR_HAIL_MAX2D_mem10_20
NCAR_HAIL_MAX2D_mem10_25
NCAR_HAIL_MAX2D_mem10_30
NCAR_HAIL_MAX2D_mem10_35
NCAR_HAIL_MAX2D_mem10_40
NCAR_HAIL_MAX2D_mem10_45
NCAR_HAIL_MAX2D_mem10_50
NCAR_HAIL_MAX2D_mem10_75
NCAR_HAIL_MAX2D_mean_5
NCAR_HAIL_MAX2D_mean_20
NCAR_HAIL_MAX2D_mean_25
NCAR_HAIL_MAX2D_mean_30
NCAR_HAIL_MAX2D_mean_35
NCAR_HAIL_MAX2D_mean_40
NCAR_HAIL_MAX2D_mean_45
NCAR_HAIL_MAX2D_mean_50
NCAR_HAIL_MAX2D_mean_75
NCAR_HAIL_MAXK1_mem1_5
NCAR_HAIL_MAXK1_mem1_20
NCAR_HAIL_MAXK1_mem1_25
NCAR_HAIL_MAXK1_mem1_30
NCAR_HAIL_MAXK1_mem1_35
NCAR_HAIL_MAXK1_mem1_40
NCAR_HAIL_MAXK1_mem1_45
NCAR_HAIL_MAXK1_mem1_50
NCAR_HAIL_MAXK1_mem1_75
NCAR_HAIL_MAXK1_mem2_5
NCAR_HAIL_MAXK1_mem2_20
NCAR_HAIL_MAXK1_mem2_25
NCAR_HAIL_MAXK1_mem2_30
NCAR_HAIL_MAXK1_mem2_35
NCAR_HAIL_MAXK1_mem2_40
NCAR_HAIL_MAXK1_mem2_45
NCAR_HAIL_MAXK1_mem2_50
NCAR_HAIL_MAXK1_mem2_75
NCAR_HAIL_MAXK1_mem3_5
NCAR_HAIL_MAXK1_mem3_20
NCAR_HAIL_MAXK1_mem3_25
NCAR_HAIL_MAXK1_mem3_30
NCAR_HAIL_MAXK1_mem3_35
NCAR_HAIL_MAXK1_mem3_40
NCAR_HAIL_MAXK1_mem3_45
NCAR_HAIL_MAXK1_mem3_50
NCAR_HAIL_MAXK1_mem3_75
NCAR_HAIL_MAXK1_mem4_5
NCAR_HAIL_MAXK1_mem4_20
NCAR_HAIL_MAXK1_mem4_25
NCAR_HAIL_MAXK1_mem4_30
NCAR_HAIL_MAXK1_mem4_35
NCAR_HAIL_MAXK1_mem4_40
NCAR_HAIL_MAXK1_mem4_45
NCAR_HAIL_MAXK1_mem4_50
NCAR_HAIL_MAXK1_mem4_75
NCAR_HAIL_MAXK1_mem5_5
NCAR_HAIL_MAXK1_mem5_20
NCAR_HAIL_MAXK1_mem5_25
NCAR_HAIL_MAXK1_mem5_30
NCAR_HAIL_MAXK1_mem5_35
NCAR_HAIL_MAXK1_mem5_40
NCAR_HAIL_MAXK1_mem5_45
NCAR_HAIL_MAXK1_mem5_50
NCAR_HAIL_MAXK1_mem5_75
NCAR_HAIL_MAXK1_mem6_5
NCAR_HAIL_MAXK1_mem6_20
NCAR_HAIL_MAXK1_mem6_25
NCAR_HAIL_MAXK1_mem6_30
NCAR_HAIL_MAXK1_mem6_35
NCAR_HAIL_MAXK1_mem6_40
NCAR_HAIL_MAXK1_mem6_45
NCAR_HAIL_MAXK1_mem6_50
NCAR_HAIL_MAXK1_mem6_75
NCAR_HAIL_MAXK1_mem7_5
NCAR_HAIL_MAXK1_mem7_20
NCAR_HAIL_MAXK1_mem7_25
NCAR_HAIL_MAXK1_mem7_30
NCAR_HAIL_MAXK1_mem7_35
NCAR_HAIL_MAXK1_mem7_40
NCAR_HAIL_MAXK1_mem7_45
NCAR_HAIL_MAXK1_mem7_50
NCAR_HAIL_MAXK1_mem7_75
NCAR_HAIL_MAXK1_mem8_5
NCAR_HAIL_MAXK1_mem8_20
NCAR_HAIL_MAXK1_mem8_25
NCAR_HAIL_MAXK1_mem8_30
NCAR_HAIL_MAXK1_mem8_35
NCAR_HAIL_MAXK1_mem8_40
NCAR_HAIL_MAXK1_mem8_45
NCAR_HAIL_MAXK1_mem8_50
NCAR_HAIL_MAXK1_mem8_75
NCAR_HAIL_MAXK1_mem9_5
NCAR_HAIL_MAXK1_mem9_20
NCAR_HAIL_MAXK1_mem9_25
NCAR_HAIL_MAXK1_mem9_30
NCAR_HAIL_MAXK1_mem9_35
NCAR_HAIL_MAXK1_mem9_40
NCAR_HAIL_MAXK1_mem9_45
NCAR_HAIL_MAXK1_mem9_50
NCAR_HAIL_MAXK1_mem9_75
NCAR_HAIL_MAXK1_mem10_5
NCAR_HAIL_MAXK1_mem10_20
NCAR_HAIL_MAXK1_mem10_25
NCAR_HAIL_MAXK1_mem10_30
NCAR_HAIL_MAXK1_mem10_35
NCAR_HAIL_MAXK1_mem10_40
NCAR_HAIL_MAXK1_mem10_45
NCAR_HAIL_MAXK1_mem10_50
NCAR_HAIL_MAXK1_mem10_75
NCAR_HAIL_MAXK1_mean_5
NCAR_HAIL_MAXK1_mean_20
NCAR_HAIL_MAXK1_mean_25
NCAR_HAIL_MAXK1_mean_30
NCAR_HAIL_MAXK1_mean_35
NCAR_HAIL_MAXK1_mean_40
NCAR_HAIL_MAXK1_mean_45
NCAR_HAIL_MAXK1_mean_50
NCAR_HAIL_MAXK1_mean_75
NCAR_UP_HELI_MAX_mem1_5
NCAR_UP_HELI_MAX_mem1_25
NCAR_UP_HELI_MAX_mem1_50
NCAR_UP_HELI_MAX_mem1_75
NCAR_UP_HELI_MAX_mem1_100
NCAR_UP_HELI_MAX_mem1_125
NCAR_UP_HELI_MAX_mem1_150
NCAR_UP_HELI_MAX_mem1_175
NCAR_UP_HELI_MAX_mem1_200
NCAR_UP_HELI_MAX_mem2_5
NCAR_UP_HELI_MAX_mem2_25
NCAR_UP_HELI_MAX_mem2_50
NCAR_UP_HELI_MAX_mem2_75
NCAR_UP_HELI_MAX_mem2_100
NCAR_UP_HELI_MAX_mem2_125
NCAR_UP_HELI_MAX_mem2_150
NCAR_UP_HELI_MAX_mem2_175
NCAR_UP_HELI_MAX_mem2_200
NCAR_UP_HELI_MAX_mem3_5
NCAR_UP_HELI_MAX_mem3_25
NCAR_UP_HELI_MAX_mem3_50
NCAR_UP_HELI_MAX_mem3_75
NCAR_UP_HELI_MAX_mem3_100
NCAR_UP_HELI_MAX_mem3_125
NCAR_UP_HELI_MAX_mem3_150
NCAR_UP_HELI_MAX_mem3_175
NCAR_UP_HELI_MAX_mem3_200
NCAR_UP_HELI_MAX_mem4_5
NCAR_UP_HELI_MAX_mem4_25
NCAR_UP_HELI_MAX_mem4_50
NCAR_UP_HELI_MAX_mem4_75
NCAR_UP_HELI_MAX_mem4_100
NCAR_UP_HELI_MAX_mem4_125
NCAR_UP_HELI_MAX_mem4_150
NCAR_UP_HELI_MAX_mem4_175
NCAR_UP_HELI_MAX_mem4_200
NCAR_UP_HELI_MAX_mem5_5
NCAR_UP_HELI_MAX_mem5_25
NCAR_UP_HELI_MAX_mem5_50
NCAR_UP_HELI_MAX_mem5_75
NCAR_UP_HELI_MAX_mem5_100
NCAR_UP_HELI_MAX_mem5_125
NCAR_UP_HELI_MAX_mem5_150
NCAR_UP_HELI_MAX_mem5_175
NCAR_UP_HELI_MAX_mem5_200
NCAR_UP_HELI_MAX_mem6_5
NCAR_UP_HELI_MAX_mem6_25
NCAR_UP_HELI_MAX_mem6_50
NCAR_UP_HELI_MAX_mem6_75
NCAR_UP_HELI_MAX_mem6_100
NCAR_UP_HELI_MAX_mem6_125
NCAR_UP_HELI_MAX_mem6_150
NCAR_UP_HELI_MAX_mem6_175
NCAR_UP_HELI_MAX_mem6_200
NCAR_UP_HELI_MAX_mem7_5
NCAR_UP_HELI_MAX_mem7_25
NCAR_UP_HELI_MAX_mem7_50
NCAR_UP_HELI_MAX_mem7_75
NCAR_UP_HELI_MAX_mem7_100
NCAR_UP_HELI_MAX_mem7_125
NCAR_UP_HELI_MAX_mem7_150
NCAR_UP_HELI_MAX_mem7_175
NCAR_UP_HELI_MAX_mem7_200
NCAR_UP_HELI_MAX_mem8_5
NCAR_UP_HELI_MAX_mem8_25
NCAR_UP_HELI_MAX_mem8_50
NCAR_UP_HELI_MAX_mem8_75
NCAR_UP_HELI_MAX_mem8_100
NCAR_UP_HELI_MAX_mem8_125
NCAR_UP_HELI_MAX_mem8_150
NCAR_UP_HELI_MAX_mem8_175
NCAR_UP_HELI_MAX_mem8_200
NCAR_UP_HELI_MAX_mem9_5
NCAR_UP_HELI_MAX_mem9_25
NCAR_UP_HELI_MAX_mem9_50
NCAR_UP_HELI_MAX_mem9_75
NCAR_UP_HELI_MAX_mem9_100
NCAR_UP_HELI_MAX_mem9_125
NCAR_UP_HELI_MAX_mem9_150
NCAR_UP_HELI_MAX_mem9_175
NCAR_UP_HELI_MAX_mem9_200
NCAR_UP_HELI_MAX_mem10_5
NCAR_UP_HELI_MAX_mem10_25
NCAR_UP_HELI_MAX_mem10_50
NCAR_UP_HELI_MAX_mem10_75
NCAR_UP_HELI_MAX_mem10_100
NCAR_UP_HELI_MAX_mem10_125
NCAR_UP_HELI_MAX_mem10_150
NCAR_UP_HELI_MAX_mem10_175
NCAR_UP_HELI_MAX_mem10_200
NCAR_UP_HELI_MAX_mean_5
NCAR_UP_HELI_MAX_mean_25
NCAR_UP_HELI_MAX_mean_50
NCAR_UP_HELI_MAX_mean_75
NCAR_UP_HELI_MAX_mean_100
NCAR_UP_HELI_MAX_mean_125
NCAR_UP_HELI_MAX_mean_150
NCAR_UP_HELI_MAX_mean_175
NCAR_UP_HELI_MAX_mean_200
NCAR_GRPL_MAX_mem1_5
NCAR_GRPL_MAX_mem1_10
NCAR_GRPL_MAX_mem1_15
NCAR_GRPL_MAX_mem1_20
NCAR_GRPL_MAX_mem1_25
NCAR_GRPL_MAX_mem1_30
NCAR_GRPL_MAX_mem1_35
NCAR_GRPL_MAX_mem1_40
NCAR_GRPL_MAX_mem1_45
NCAR_GRPL_MAX_mem1_50
NCAR_GRPL_MAX_mem2_5
NCAR_GRPL_MAX_mem2_10
NCAR_GRPL_MAX_mem2_15
NCAR_GRPL_MAX_mem2_20
NCAR_GRPL_MAX_mem2_25
NCAR_GRPL_MAX_mem2_30
NCAR_GRPL_MAX_mem2_35
NCAR_GRPL_MAX_mem2_40
NCAR_GRPL_MAX_mem2_45
NCAR_GRPL_MAX_mem2_50
NCAR_GRPL_MAX_mem3_5
NCAR_GRPL_MAX_mem3_10
NCAR_GRPL_MAX_mem3_15
NCAR_GRPL_MAX_mem3_20
NCAR_GRPL_MAX_mem3_25
NCAR_GRPL_MAX_mem3_30
NCAR_GRPL_MAX_mem3_35
NCAR_GRPL_MAX_mem3_40
NCAR_GRPL_MAX_mem3_45
NCAR_GRPL_MAX_mem3_50
NCAR_GRPL_MAX_mem4_5
NCAR_GRPL_MAX_mem4_10
NCAR_GRPL_MAX_mem4_15
NCAR_GRPL_MAX_mem4_20
NCAR_GRPL_MAX_mem4_25
NCAR_GRPL_MAX_mem4_30
NCAR_GRPL_MAX_mem4_35
NCAR_GRPL_MAX_mem4_40
NCAR_GRPL_MAX_mem4_45
NCAR_GRPL_MAX_mem4_50
NCAR_GRPL_MAX_mem5_5
NCAR_GRPL_MAX_mem5_10
NCAR_GRPL_MAX_mem5_15
NCAR_GRPL_MAX_mem5_20
NCAR_GRPL_MAX_mem5_25
NCAR_GRPL_MAX_mem5_30
NCAR_GRPL_MAX_mem5_35
NCAR_GRPL_MAX_mem5_40
NCAR_GRPL_MAX_mem5_45
NCAR_GRPL_MAX_mem5_50
NCAR_GRPL_MAX_mem6_5
NCAR_GRPL_MAX_mem6_10
NCAR_GRPL_MAX_mem6_15
NCAR_GRPL_MAX_mem6_20
NCAR_GRPL_MAX_mem6_25
NCAR_GRPL_MAX_mem6_30
NCAR_GRPL_MAX_mem6_35
NCAR_GRPL_MAX_mem6_40
NCAR_GRPL_MAX_mem6_45
NCAR_GRPL_MAX_mem6_50
NCAR_GRPL_MAX_mem7_5
NCAR_GRPL_MAX_mem7_10
NCAR_GRPL_MAX_mem7_15
NCAR_GRPL_MAX_mem7_20
NCAR_GRPL_MAX_mem7_25
NCAR_GRPL_MAX_mem7_30
NCAR_GRPL_MAX_mem7_35
NCAR_GRPL_MAX_mem7_40
NCAR_GRPL_MAX_mem7_45
NCAR_GRPL_MAX_mem7_50
NCAR_GRPL_MAX_mem8_5
NCAR_GRPL_MAX_mem8_10
NCAR_GRPL_MAX_mem8_15
NCAR_GRPL_MAX_mem8_20
NCAR_GRPL_MAX_mem8_25
NCAR_GRPL_MAX_mem8_30
NCAR_GRPL_MAX_mem8_35
NCAR_GRPL_MAX_mem8_40
NCAR_GRPL_MAX_mem8_45
NCAR_GRPL_MAX_mem8_50
NCAR_GRPL_MAX_mem9_5
NCAR_GRPL_MAX_mem9_10
NCAR_GRPL_MAX_mem9_15
NCAR_GRPL_MAX_mem9_20
NCAR_GRPL_MAX_mem9_25
NCAR_GRPL_MAX_mem9_30
NCAR_GRPL_MAX_mem9_35
NCAR_GRPL_MAX_mem9_40
NCAR_GRPL_MAX_mem9_45
NCAR_GRPL_MAX_mem9_50
NCAR_GRPL_MAX_mem10_5
NCAR_GRPL_MAX_mem10_10
NCAR_GRPL_MAX_mem10_15
NCAR_GRPL_MAX_mem10_20
NCAR_GRPL_MAX_mem10_25
NCAR_GRPL_MAX_mem10_30
NCAR_GRPL_MAX_mem10_35
NCAR_GRPL_MAX_mem10_40
NCAR_GRPL_MAX_mem10_45
NCAR_GRPL_MAX_mem10_50
NCAR_GRPL_MAX_mean_5
NCAR_GRPL_MAX_mean_10
NCAR_GRPL_MAX_mean_15
NCAR_GRPL_MAX_mean_20
NCAR_GRPL_MAX_mean_25
NCAR_GRPL_MAX_mean_30
NCAR_GRPL_MAX_mean_35
NCAR_GRPL_MAX_mean_40
NCAR_GRPL_MAX_mean_45
NCAR_GRPL_MAX_mean_50
NCAR_Random-Forest_mem1_5
NCAR_Random-Forest_mem2_5
NCAR_Random-Forest_mem3_5
NCAR_Random-Forest_mem4_5
NCAR_Random-Forest_mem5_5
NCAR_Random-Forest_mem6_5
NCAR_Random-Forest_mem7_5
NCAR_Random-Forest_mem8_5
NCAR_Random-Forest_mem9_5
NCAR_Random-Forest_mem10_5
NCAR_Random-Forest_mean_5
NCAR_Random-Forest_mem1_20
NCAR_Random-Forest_mem2_20
NCAR_Random-Forest_mem3_20
NCAR_Random-Forest_mem4_20
NCAR_Random-Forest_mem5_20
NCAR_Random-Forest_mem6_20
NCAR_Random-Forest_mem7_20
NCAR_Random-Forest_mem8_20
NCAR_Random-Forest_mem9_20
NCAR_Random-Forest_mem10_20
NCAR_Random-Forest_mean_20
NCAR_Random-Forest_mem1_25
NCAR_Random-Forest_mem2_25
NCAR_Random-Forest_mem3_25
NCAR_Random-Forest_mem4_25
NCAR_Random-Forest_mem5_25
NCAR_Random-Forest_mem6_25
NCAR_Random-Forest_mem7_25
NCAR_Random-Forest_mem8_25
NCAR_Random-Forest_mem9_25
NCAR_Random-Forest_mem10_25
NCAR_Random-Forest_mean_25
NCAR_Random-Forest_mem1_30
NCAR_Random-Forest_mem2_30
NCAR_Random-Forest_mem3_30
NCAR_Random-Forest_mem4_30
NCAR_Random-Forest_mem5_30
NCAR_Random-Forest_mem6_30
NCAR_Random-Forest_mem7_30
NCAR_Random-Forest_mem8_30
NCAR_Random-Forest_mem9_30
NCAR_Random-Forest_mem10_30
NCAR_Random-Forest_mean_30
NCAR_Random-Forest_mem1_35
NCAR_Random-Forest_mem2_35
NCAR_Random-Forest_mem3_35
NCAR_Random-Forest_mem4_35
NCAR_Random-Forest_mem5_35
NCAR_Random-Forest_mem6_35
NCAR_Random-Forest_mem7_35
NCAR_Random-Forest_mem8_35
NCAR_Random-Forest_mem9_35
NCAR_Random-Forest_mem10_35
NCAR_Random-Forest_mean_35
NCAR_Random-Forest_mem1_40
NCAR_Random-Forest_mem2_40
NCAR_Random-Forest_mem3_40
NCAR_Random-Forest_mem4_40
NCAR_Random-Forest_mem5_40
NCAR_Random-Forest_mem6_40
NCAR_Random-Forest_mem7_40
NCAR_Random-Forest_mem8_40
NCAR_Random-Forest_mem9_40
NCAR_Random-Forest_mem10_40
NCAR_Random-Forest_mean_40
NCAR_Random-Forest_mem1_45
NCAR_Random-Forest_mem2_45
NCAR_Random-Forest_mem3_45
NCAR_Random-Forest_mem4_45
NCAR_Random-Forest_mem5_45
NCAR_Random-Forest_mem6_45
NCAR_Random-Forest_mem7_45
NCAR_Random-Forest_mem8_45
NCAR_Random-Forest_mem9_45
NCAR_Random-Forest_mem10_45
NCAR_Random-Forest_mean_45
NCAR_Random-Forest_mem1_50
NCAR_Random-Forest_mem2_50
NCAR_Random-Forest_mem3_50
NCAR_Random-Forest_mem4_50
NCAR_Random-Forest_mem5_50
NCAR_Random-Forest_mem6_50
NCAR_Random-Forest_mem7_50
NCAR_Random-Forest_mem8_50
NCAR_Random-Forest_mem9_50
NCAR_Random-Forest_mem10_50
NCAR_Random-Forest_mean_50
NCAR_Random-Forest_mem1_75
NCAR_Random-Forest_mem2_75
NCAR_Random-Forest_mem3_75
NCAR_Random-Forest_mem4_75
NCAR_Random-Forest_mem5_75
NCAR_Random-Forest_mem6_75
NCAR_Random-Forest_mem7_75
NCAR_Random-Forest_mem8_75
NCAR_Random-Forest_mem9_75
NCAR_Random-Forest_mem10_75
NCAR_Random-Forest_mean_75
NCAR_Elastic-Net_mem1_5
NCAR_Elastic-Net_mem2_5
NCAR_Elastic-Net_mem3_5
NCAR_Elastic-Net_mem4_5
NCAR_Elastic-Net_mem5_5
NCAR_Elastic-Net_mem6_5
NCAR_Elastic-Net_mem7_5
NCAR_Elastic-Net_mem8_5
NCAR_Elastic-Net_mem9_5
NCAR_Elastic-Net_mem10_5
NCAR_Elastic-Net_mean_5
NCAR_Elastic-Net_mem1_20
NCAR_Elastic-Net_mem2_20
NCAR_Elastic-Net_mem3_20
NCAR_Elastic-Net_mem4_20
NCAR_Elastic-Net_mem5_20
NCAR_Elastic-Net_mem6_20
NCAR_Elastic-Net_mem7_20
NCAR_Elastic-Net_mem8_20
NCAR_Elastic-Net_mem9_20
NCAR_Elastic-Net_mem10_20
NCAR_Elastic-Net_mean_20
NCAR_Elastic-Net_mem1_25
NCAR_Elastic-Net_mem2_25
NCAR_Elastic-Net_mem3_25
NCAR_Elastic-Net_mem4_25
NCAR_Elastic-Net_mem5_25
NCAR_Elastic-Net_mem6_25
NCAR_Elastic-Net_mem7_25
NCAR_Elastic-Net_mem8_25
NCAR_Elastic-Net_mem9_25
NCAR_Elastic-Net_mem10_25
NCAR_Elastic-Net_mean_25
NCAR_Elastic-Net_mem1_30
NCAR_Elastic-Net_mem2_30
NCAR_Elastic-Net_mem3_30
NCAR_Elastic-Net_mem4_30
NCAR_Elastic-Net_mem5_30
NCAR_Elastic-Net_mem6_30
NCAR_Elastic-Net_mem7_30
NCAR_Elastic-Net_mem8_30
NCAR_Elastic-Net_mem9_30
NCAR_Elastic-Net_mem10_30
NCAR_Elastic-Net_mean_30
NCAR_Elastic-Net_mem1_35
NCAR_Elastic-Net_mem2_35
NCAR_Elastic-Net_mem3_35
NCAR_Elastic-Net_mem4_35
NCAR_Elastic-Net_mem5_35
NCAR_Elastic-Net_mem6_35
NCAR_Elastic-Net_mem7_35
NCAR_Elastic-Net_mem8_35
NCAR_Elastic-Net_mem9_35
NCAR_Elastic-Net_mem10_35
NCAR_Elastic-Net_mean_35
NCAR_Elastic-Net_mem1_40
NCAR_Elastic-Net_mem2_40
NCAR_Elastic-Net_mem3_40
NCAR_Elastic-Net_mem4_40
NCAR_Elastic-Net_mem5_40
NCAR_Elastic-Net_mem6_40
NCAR_Elastic-Net_mem7_40
NCAR_Elastic-Net_mem8_40
NCAR_Elastic-Net_mem9_40
NCAR_Elastic-Net_mem10_40
NCAR_Elastic-Net_mean_40
NCAR_Elastic-Net_mem1_45
NCAR_Elastic-Net_mem2_45
NCAR_Elastic-Net_mem3_45
NCAR_Elastic-Net_mem4_45
NCAR_Elastic-Net_mem5_45
NCAR_Elastic-Net_mem6_45
NCAR_Elastic-Net_mem7_45
NCAR_Elastic-Net_mem8_45
NCAR_Elastic-Net_mem9_45
NCAR_Elastic-Net_mem10_45
NCAR_Elastic-Net_mean_45
NCAR_Elastic-Net_mem1_50
NCAR_Elastic-Net_mem2_50
NCAR_Elastic-Net_mem3_50
NCAR_Elastic-Net_mem4_50
NCAR_Elastic-Net_mem5_50
NCAR_Elastic-Net_mem6_50
NCAR_Elastic-Net_mem7_50
NCAR_Elastic-Net_mem8_50
NCAR_Elastic-Net_mem9_50
NCAR_Elastic-Net_mem10_50
NCAR_Elastic-Net_mean_50
NCAR_Elastic-Net_mem1_75
NCAR_Elastic-Net_mem2_75
NCAR_Elastic-Net_mem3_75
NCAR_Elastic-Net_mem4_75
NCAR_Elastic-Net_mem5_75
NCAR_Elastic-Net_mem6_75
NCAR_Elastic-Net_mem7_75
NCAR_Elastic-Net_mem8_75
NCAR_Elastic-Net_mem9_75
NCAR_Elastic-Net_mem10_75
NCAR_Elastic-Net_mean_75
NCAR_Random-Forest-CV_mem1_5
NCAR_Random-Forest-CV_mem2_5
NCAR_Random-Forest-CV_mem3_5
NCAR_Random-Forest-CV_mem4_5
NCAR_Random-Forest-CV_mem5_5
NCAR_Random-Forest-CV_mem6_5
NCAR_Random-Forest-CV_mem7_5
NCAR_Random-Forest-CV_mem8_5
NCAR_Random-Forest-CV_mem9_5
NCAR_Random-Forest-CV_mem10_5
NCAR_Random-Forest-CV_mean_5
NCAR_Random-Forest-CV_mem1_20
NCAR_Random-Forest-CV_mem2_20
NCAR_Random-Forest-CV_mem3_20
NCAR_Random-Forest-CV_mem4_20
NCAR_Random-Forest-CV_mem5_20
NCAR_Random-Forest-CV_mem6_20
NCAR_Random-Forest-CV_mem7_20
NCAR_Random-Forest-CV_mem8_20
NCAR_Random-Forest-CV_mem9_20
NCAR_Random-Forest-CV_mem10_20
NCAR_Random-Forest-CV_mean_20
NCAR_Random-Forest-CV_mem1_25
NCAR_Random-Forest-CV_mem2_25
NCAR_Random-Forest-CV_mem3_25
NCAR_Random-Forest-CV_mem4_25
NCAR_Random-Forest-CV_mem5_25
NCAR_Random-Forest-CV_mem6_25
NCAR_Random-Forest-CV_mem7_25
NCAR_Random-Forest-CV_mem8_25
NCAR_Random-Forest-CV_mem9_25
NCAR_Random-Forest-CV_mem10_25
NCAR_Random-Forest-CV_mean_25
NCAR_Random-Forest-CV_mem1_30
NCAR_Random-Forest-CV_mem2_30
NCAR_Random-Forest-CV_mem3_30
NCAR_Random-Forest-CV_mem4_30
NCAR_Random-Forest-CV_mem5_30
NCAR_Random-Forest-CV_mem6_30
NCAR_Random-Forest-CV_mem7_30
NCAR_Random-Forest-CV_mem8_30
NCAR_Random-Forest-CV_mem9_30
NCAR_Random-Forest-CV_mem10_30
NCAR_Random-Forest-CV_mean_30
NCAR_Random-Forest-CV_mem1_35
NCAR_Random-Forest-CV_mem2_35
NCAR_Random-Forest-CV_mem3_35
NCAR_Random-Forest-CV_mem4_35
NCAR_Random-Forest-CV_mem5_35
NCAR_Random-Forest-CV_mem6_35
NCAR_Random-Forest-CV_mem7_35
NCAR_Random-Forest-CV_mem8_35
NCAR_Random-Forest-CV_mem9_35
NCAR_Random-Forest-CV_mem10_35
NCAR_Random-Forest-CV_mean_35
NCAR_Random-Forest-CV_mem1_40
NCAR_Random-Forest-CV_mem2_40
NCAR_Random-Forest-CV_mem3_40
NCAR_Random-Forest-CV_mem4_40
NCAR_Random-Forest-CV_mem5_40
NCAR_Random-Forest-CV_mem6_40
NCAR_Random-Forest-CV_mem7_40
NCAR_Random-Forest-CV_mem8_40
NCAR_Random-Forest-CV_mem9_40
NCAR_Random-Forest-CV_mem10_40
NCAR_Random-Forest-CV_mean_40
NCAR_Random-Forest-CV_mem1_45
NCAR_Random-Forest-CV_mem2_45
NCAR_Random-Forest-CV_mem3_45
NCAR_Random-Forest-CV_mem4_45
NCAR_Random-Forest-CV_mem5_45
NCAR_Random-Forest-CV_mem6_45
NCAR_Random-Forest-CV_mem7_45
NCAR_Random-Forest-CV_mem8_45
NCAR_Random-Forest-CV_mem9_45
NCAR_Random-Forest-CV_mem10_45
NCAR_Random-Forest-CV_mean_45
NCAR_Random-Forest-CV_mem1_50
NCAR_Random-Forest-CV_mem2_50
NCAR_Random-Forest-CV_mem3_50
NCAR_Random-Forest-CV_mem4_50
NCAR_Random-Forest-CV_mem5_50
NCAR_Random-Forest-CV_mem6_50
NCAR_Random-Forest-CV_mem7_50
NCAR_Random-Forest-CV_mem8_50
NCAR_Random-Forest-CV_mem9_50
NCAR_Random-Forest-CV_mem10_50
NCAR_Random-Forest-CV_mean_50
NCAR_Random-Forest-CV_mem1_75
NCAR_Random-Forest-CV_mem2_75
NCAR_Random-Forest-CV_mem3_75
NCAR_Random-Forest-CV_mem4_75
NCAR_Random-Forest-CV_mem5_75
NCAR_Random-Forest-CV_mem6_75
NCAR_Random-Forest-CV_mem7_75
NCAR_Random-Forest-CV_mem8_75
NCAR_Random-Forest-CV_mem9_75
NCAR_Random-Forest-CV_mem10_75
NCAR_Random-Forest-CV_mean_75

In [26]:
plt.contourf(eval_data["NCAR_UP_HELI_MAX_mean_150"].values.reshape((71, 113)))


Out[26]:
<matplotlib.contour.QuadContourSet at 0x2b0b83cc78d0>

In [20]:
eval_data.j_small.max()


Out[20]:
112

In [32]:
d = Dataset("/glade/scratch/dgagne/RT2016/2016052600/mem1_surrogate_2016052600.nc")
hail_max = d.variables["HAIL_MAXK1"][:]

In [34]:
hail_max.max() * 1000


Out[34]:
86.87271922826767

In [38]:
model_output = ModelOutput("NCAR", "mem1", datetime(2016, 5, 26), "HAIL_MAXK1", 
                          datetime(2016, 5, 26) + timedelta(hours=13), datetime(2016,5,26) + timedelta(hours=36),
                          "/glade/scratch/dgagne/RT2016/", single_step=False)
model_output.load_data()

In [42]:
model_output.units


Out[42]:
u'm'

In [ ]: