In [1]:
%matplotlib inline
from matplotlib import pyplot as plt, cm
import cv2
import numpy as np

In [2]:
# Sort contours according to their size/area, along with a template to follow to sort contours 
# by any other arbitrary criteria.

# Sort contoured regions from left-to-right, right-to-left, top-to-bottom, and 
# bottom-to-top using only a single function.

In [4]:
def sort_contours(cnts, method="left-to-right"):
    # initialize the reverse flag and sort index
    reverse = False
    i = 0
    
    # handle if we need to sort in reverse
    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True
    
    # handle if we are sorting against the y-coordinate rather than
    # the x-coordinate of the bounding box
    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    
    # construct the list of bounding boxes and sort them from top to
    # bottom
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
        key=lambda b:b[1][i], reverse=reverse))
    
    # return the list of sorted contours and bounding boxes
    return (cnts, boundingBoxes)


def draw_contour(image, c, i):
    # compute the center of the contour area and draw a circle
    # representing the center
    M = cv2.moments(c)
    cX = int(M["m10"] / M["m00"])
    cY = int(M["m01"] / M["m00"])
    
    # draw the countour number on the image
    cv2.putText(image, "#{}".format(i + 1), (cX - 20, cY), cv2.FONT_HERSHEY_SIMPLEX,
        1.0, (255, 255, 255), 2)
    
    # return the image with the contour number drawn on it
    return image

In [5]:
# load the image and initialize the accumulated edge image
image = cv2.imread("./data/coins.JPG")
accumEdged = np.zeros(image.shape[:2], dtype="uint8")
 
# loop over the blue, green, and red channels, respectively
for chan in cv2.split(image):
    # blur the channel, extract edges from it, and accumulate the set
    # of edges for the image
    chan = cv2.medianBlur(chan, 11)
    edged = cv2.Canny(chan, 50, 200)
    accumEdged = cv2.bitwise_or(accumEdged, edged)
 
# show the accumulated edge map
plt.figure(figsize=(16,12))
plt.subplot(111), plt.imshow(accumEdged, cmap = 'gray')
plt.title('Edge Map')


Out[5]:
<matplotlib.text.Text at 0x107466110>

In [8]:
# find contours in the accumulated image, keeping only the largest
# ones
(cnts, _) = cv2.findContours(accumEdged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
orig = image.copy()
 
# loop over the (unsorted) contours and draw them
for (i, c) in enumerate(cnts):
    orig = draw_contour(orig, c, i)
 
# show the original, unsorted contour image
plt.figure(figsize=(16,12))
plt.subplot(121), plt.imshow(orig, cmap = 'gray')
plt.title('Unsorted')


# sort the contours according to the provided method
(cnts, boundingBoxes) = sort_contours(cnts, method="top-to-bottom")
 
# loop over the (now sorted) contours and draw them
for (i, c) in enumerate(cnts):
    draw_contour(image, c, i)
 
# show the output image
plt.figure(figsize=(16,12))
plt.subplot(122), plt.imshow(image, cmap = 'gray')
plt.title('Sorted')


Out[8]:
<matplotlib.text.Text at 0x109621c10>

In [ ]: