In [6]:
%matplotlib inline
from pylearn2.config import yaml_parse
from matplotlib import pyplot as plt, cm

In [2]:
!ls /Users/dikien/Downloads/pylearn2/pylearn2/scripts/tutorials/multilayer_perceptron/
%cd /Users/dikien/Downloads/pylearn2/pylearn2/scripts/tutorials/multilayer_perceptron/


README                      mlp_tutorial_part_2.yaml    mlp_tutorial_part_4.yaml    tests
mlp_best.pkl                mlp_tutorial_part_3.yaml    multilayer_perceptron.ipynb
/Users/dikien/Downloads/pylearn2/pylearn2/scripts/tutorials/multilayer_perceptron

In [3]:
with open("mlp_tutorial_part_2.yaml", 'r') as f:
    train = f.read()
hyper_params = {'train_stop' : 50000,
                'valid_stop' : 60000,
                'dim_h0' : 500,
                'max_epochs' : 1, #10000
                'save_path' : '.'}
train = train % (hyper_params)
print train


!obj:pylearn2.train.Train {
    dataset: &train !obj:pylearn2.datasets.mnist.MNIST {
        which_set: 'train',
        start: 0,
        stop: 50000
    },
    model: !obj:pylearn2.models.mlp.MLP {
        layers: [
                 !obj:pylearn2.models.mlp.Sigmoid {
                     layer_name: 'h0',
                     dim: 500,
                     sparse_init: 15,
                 }, !obj:pylearn2.models.mlp.Softmax {
                     layer_name: 'y',
                     n_classes: 10,
                     irange: 0.
                 }
                ],
        nvis: 784,
    },
    algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
        batch_size: 10000,
        line_search_mode: 'exhaustive',
        conjugate: 1,
        updates_per_batch: 10,
        monitoring_dataset:
            {
                'train' : *train,
                'valid' : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'train',
                              start: 50000,
                              stop: 60000
                          },
                'test'  : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'test',
                          }
            },
        termination_criterion: !obj:pylearn2.termination_criteria.And {
            criteria: [
                !obj:pylearn2.termination_criteria.MonitorBased {
                    channel_name: "valid_y_misclass"
                },
                !obj:pylearn2.termination_criteria.EpochCounter {
                    max_epochs: 1
                }
            ]
        }
    },
    extensions: [
        !obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
             channel_name: 'valid_y_misclass',
             save_path: "./mlp_best.pkl"
        },
    ]
}


In [4]:
train = yaml_parse.load(train)
train.main_loop()


compiling begin_record_entry...
compiling begin_record_entry done. Time elapsed: 0.316489 seconds
Monitored channels: 
	ave_grad_mult
	ave_grad_size
	ave_step_size
	test_h0_col_norms_max
	test_h0_col_norms_mean
	test_h0_col_norms_min
	test_h0_max_x_max_u
	test_h0_max_x_mean_u
	test_h0_max_x_min_u
	test_h0_mean_x_max_u
	test_h0_mean_x_mean_u
	test_h0_mean_x_min_u
	test_h0_min_x_max_u
	test_h0_min_x_mean_u
	test_h0_min_x_min_u
	test_h0_range_x_max_u
	test_h0_range_x_mean_u
	test_h0_range_x_min_u
	test_h0_row_norms_max
	test_h0_row_norms_mean
	test_h0_row_norms_min
	test_objective
	test_y_col_norms_max
	test_y_col_norms_mean
	test_y_col_norms_min
	test_y_max_max_class
	test_y_mean_max_class
	test_y_min_max_class
	test_y_misclass
	test_y_nll
	test_y_row_norms_max
	test_y_row_norms_mean
	test_y_row_norms_min
	total_seconds_last_epoch
	train_h0_col_norms_max
	train_h0_col_norms_mean
	train_h0_col_norms_min
	train_h0_max_x_max_u
	train_h0_max_x_mean_u
	train_h0_max_x_min_u
	train_h0_mean_x_max_u
	train_h0_mean_x_mean_u
	train_h0_mean_x_min_u
	train_h0_min_x_max_u
	train_h0_min_x_mean_u
	train_h0_min_x_min_u
	train_h0_range_x_max_u
	train_h0_range_x_mean_u
	train_h0_range_x_min_u
	train_h0_row_norms_max
	train_h0_row_norms_mean
	train_h0_row_norms_min
	train_objective
	train_y_col_norms_max
	train_y_col_norms_mean
	train_y_col_norms_min
	train_y_max_max_class
	train_y_mean_max_class
	train_y_min_max_class
	train_y_misclass
	train_y_nll
	train_y_row_norms_max
	train_y_row_norms_mean
	train_y_row_norms_min
	training_seconds_this_epoch
	valid_h0_col_norms_max
	valid_h0_col_norms_mean
	valid_h0_col_norms_min
	valid_h0_max_x_max_u
	valid_h0_max_x_mean_u
	valid_h0_max_x_min_u
	valid_h0_mean_x_max_u
	valid_h0_mean_x_mean_u
	valid_h0_mean_x_min_u
	valid_h0_min_x_max_u
	valid_h0_min_x_mean_u
	valid_h0_min_x_min_u
	valid_h0_range_x_max_u
	valid_h0_range_x_mean_u
	valid_h0_range_x_min_u
	valid_h0_row_norms_max
	valid_h0_row_norms_mean
	valid_h0_row_norms_min
	valid_objective
	valid_y_col_norms_max
	valid_y_col_norms_mean
	valid_y_col_norms_min
	valid_y_max_max_class
	valid_y_mean_max_class
	valid_y_min_max_class
	valid_y_misclass
	valid_y_nll
	valid_y_row_norms_max
	valid_y_row_norms_mean
	valid_y_row_norms_min
Compiling accum...
graph size: 118
graph size: 113
graph size: 113
Compiling accum done. Time elapsed: 4.033446 seconds
Monitoring step:
	Epochs seen: 0
	Batches seen: 0
	Examples seen: 0
	ave_grad_mult: 0.0
	ave_grad_size: 0.0
	ave_step_size: 0.0
	test_h0_col_norms_max: 6.23503405999
	test_h0_col_norms_mean: 3.82355643971
	test_h0_col_norms_min: 2.06193996111
	test_h0_max_x_max_u: 0.999900672858
	test_h0_max_x_mean_u: 0.909941495671
	test_h0_max_x_min_u: 0.508436836559
	test_h0_mean_x_max_u: 0.901069905001
	test_h0_mean_x_mean_u: 0.476713326581
	test_h0_mean_x_min_u: 0.152832768345
	test_h0_min_x_max_u: 0.480607664972
	test_h0_min_x_mean_u: 0.0718067763455
	test_h0_min_x_min_u: 0.000174344384626
	test_h0_range_x_max_u: 0.98963074706
	test_h0_range_x_mean_u: 0.838134719326
	test_h0_range_x_min_u: 0.461663761987
	test_h0_row_norms_max: 5.89326124667
	test_h0_row_norms_mean: 2.98549156744
	test_h0_row_norms_min: 0.0
	test_objective: 2.30258509299
	test_y_col_norms_max: 0.0
	test_y_col_norms_mean: 0.0
	test_y_col_norms_min: 0.0
	test_y_max_max_class: 0.1
	test_y_mean_max_class: 0.1
	test_y_min_max_class: 0.1
	test_y_misclass: 0.902
	test_y_nll: 2.30258509299
	test_y_row_norms_max: 0.0
	test_y_row_norms_mean: 0.0
	test_y_row_norms_min: 0.0
	total_seconds_last_epoch: 0.0
	train_h0_col_norms_max: 6.23503405999
	train_h0_col_norms_mean: 3.82355643971
	train_h0_col_norms_min: 2.06193996111
	train_h0_max_x_max_u: 0.999884207079
	train_h0_max_x_mean_u: 0.910601234661
	train_h0_max_x_min_u: 0.542480235261
	train_h0_mean_x_max_u: 0.899177645344
	train_h0_mean_x_mean_u: 0.477026786605
	train_h0_mean_x_min_u: 0.158626428409
	train_h0_min_x_max_u: 0.458495451967
	train_h0_min_x_mean_u: 0.0697232989866
	train_h0_min_x_min_u: 0.000107248355934
	train_h0_range_x_max_u: 0.993503615767
	train_h0_range_x_mean_u: 0.840877935674
	train_h0_range_x_min_u: 0.432142549731
	train_h0_row_norms_max: 5.89326124667
	train_h0_row_norms_mean: 2.98549156744
	train_h0_row_norms_min: 0.0
	train_objective: 2.30258509299
	train_y_col_norms_max: 0.0
	train_y_col_norms_mean: 0.0
	train_y_col_norms_min: 0.0
	train_y_max_max_class: 0.1
	train_y_mean_max_class: 0.1
	train_y_min_max_class: 0.1
	train_y_misclass: 0.90136
	train_y_nll: 2.30258509299
	train_y_row_norms_max: 0.0
	train_y_row_norms_mean: 0.0
	train_y_row_norms_min: 0.0
	training_seconds_this_epoch: 0.0
	valid_h0_col_norms_max: 6.23503405999
	valid_h0_col_norms_mean: 3.82355643971
	valid_h0_col_norms_min: 2.06193996111
	valid_h0_max_x_max_u: 0.999902364459
	valid_h0_max_x_mean_u: 0.910734674045
	valid_h0_max_x_min_u: 0.505713638328
	valid_h0_mean_x_max_u: 0.897212634566
	valid_h0_mean_x_mean_u: 0.477113329951
	valid_h0_mean_x_min_u: 0.159442692765
	valid_h0_min_x_max_u: 0.474104176772
	valid_h0_min_x_mean_u: 0.07068185398
	valid_h0_min_x_min_u: 0.000110276493931
	valid_h0_range_x_max_u: 0.994406994152
	valid_h0_range_x_mean_u: 0.840052820065
	valid_h0_range_x_min_u: 0.445501338425
	valid_h0_row_norms_max: 5.89326124667
	valid_h0_row_norms_mean: 2.98549156744
	valid_h0_row_norms_min: 0.0
	valid_objective: 2.30258509299
	valid_y_col_norms_max: 0.0
	valid_y_col_norms_mean: 0.0
	valid_y_col_norms_min: 0.0
	valid_y_max_max_class: 0.1
	valid_y_mean_max_class: 0.1
	valid_y_min_max_class: 0.1
	valid_y_misclass: 0.9009
	valid_y_nll: 2.30258509299
	valid_y_row_norms_max: 0.0
	valid_y_row_norms_mean: 0.0
	valid_y_row_norms_min: 0.0
Saving to ./mlp_best.pkl...
Saving to ./mlp_best.pkl done. Time elapsed: 0.621315 seconds
Time this epoch: 0:03:22.669563
Monitoring step:
	Epochs seen: 1
	Batches seen: 5
	Examples seen: 50000
	ave_grad_mult: 0.568428376745
	ave_grad_size: 0.569275215102
	ave_step_size: 0.293164906817
	test_h0_col_norms_max: 6.24084816402
	test_h0_col_norms_mean: 3.8330191565
	test_h0_col_norms_min: 2.07277098332
	test_h0_max_x_max_u: 0.999797012523
	test_h0_max_x_mean_u: 0.930507070205
	test_h0_max_x_min_u: 0.600885181612
	test_h0_mean_x_max_u: 0.86138560511
	test_h0_mean_x_mean_u: 0.47684242763
	test_h0_mean_x_min_u: 0.171815715135
	test_h0_min_x_max_u: 0.410199041785
	test_h0_min_x_mean_u: 0.0532412819482
	test_h0_min_x_min_u: 0.000194870876317
	test_h0_range_x_max_u: 0.995852544072
	test_h0_range_x_mean_u: 0.877265788257
	test_h0_range_x_min_u: 0.548945839167
	test_h0_row_norms_max: 5.89793230281
	test_h0_row_norms_mean: 2.99315610991
	test_h0_row_norms_min: 0.00719804802815
	test_objective: 0.345809614411
	test_y_col_norms_max: 2.78234106666
	test_y_col_norms_mean: 2.59701149502
	test_y_col_norms_min: 2.3810874603
	test_y_max_max_class: 0.999821373414
	test_y_mean_max_class: 0.844709547442
	test_y_min_max_class: 0.206097493724
	test_y_misclass: 0.0964
	test_y_nll: 0.345809614411
	test_y_row_norms_max: 0.705822478407
	test_y_row_norms_mean: 0.347877919902
	test_y_row_norms_min: 0.0778698200526
	total_seconds_last_epoch: 0.0
	train_h0_col_norms_max: 6.24084816402
	train_h0_col_norms_mean: 3.8330191565
	train_h0_col_norms_min: 2.07277098332
	train_h0_max_x_max_u: 0.999829597379
	train_h0_max_x_mean_u: 0.931275661933
	train_h0_max_x_min_u: 0.618205979121
	train_h0_mean_x_max_u: 0.858717658701
	train_h0_mean_x_mean_u: 0.477121657696
	train_h0_mean_x_min_u: 0.178341485107
	train_h0_min_x_max_u: 0.385012327626
	train_h0_min_x_mean_u: 0.0521292482027
	train_h0_min_x_min_u: 0.000150238486259
	train_h0_range_x_max_u: 0.996723214144
	train_h0_range_x_mean_u: 0.879146413731
	train_h0_range_x_min_u: 0.547978559446
	train_h0_row_norms_max: 5.89793230281
	train_h0_row_norms_mean: 2.99315610991
	train_h0_row_norms_min: 0.00719804802815
	train_objective: 0.367122860086
	train_y_col_norms_max: 2.78234106666
	train_y_col_norms_mean: 2.59701149502
	train_y_col_norms_min: 2.3810874603
	train_y_max_max_class: 0.999852802841
	train_y_mean_max_class: 0.837913061583
	train_y_min_max_class: 0.200456685509
	train_y_misclass: 0.10438
	train_y_nll: 0.367122860086
	train_y_row_norms_max: 0.705822478407
	train_y_row_norms_mean: 0.347877919902
	train_y_row_norms_min: 0.0778698200526
	training_seconds_this_epoch: 202.669563
	valid_h0_col_norms_max: 6.24084816402
	valid_h0_col_norms_mean: 3.8330191565
	valid_h0_col_norms_min: 2.07277098332
	valid_h0_max_x_max_u: 0.999862677883
	valid_h0_max_x_mean_u: 0.930968702242
	valid_h0_max_x_min_u: 0.640350398959
	valid_h0_mean_x_max_u: 0.856678213378
	valid_h0_mean_x_mean_u: 0.477206979816
	valid_h0_mean_x_min_u: 0.178252463979
	valid_h0_min_x_max_u: 0.360575213125
	valid_h0_min_x_mean_u: 0.0527645351181
	valid_h0_min_x_min_u: 0.000214541742634
	valid_h0_range_x_max_u: 0.997314378604
	valid_h0_range_x_mean_u: 0.878204167123
	valid_h0_range_x_min_u: 0.521885364154
	valid_h0_row_norms_max: 5.89793230281
	valid_h0_row_norms_mean: 2.99315610991
	valid_h0_row_norms_min: 0.00719804802815
	valid_objective: 0.334305279604
	valid_y_col_norms_max: 2.78234106666
	valid_y_col_norms_mean: 2.59701149502
	valid_y_col_norms_min: 2.3810874603
	valid_y_max_max_class: 0.999953240738
	valid_y_mean_max_class: 0.84881891044
	valid_y_min_max_class: 0.193943289318
	valid_y_misclass: 0.0947
	valid_y_nll: 0.334305279604
	valid_y_row_norms_max: 0.705822478407
	valid_y_row_norms_mean: 0.347877919902
	valid_y_row_norms_min: 0.0778698200526
Saving to ./mlp_best.pkl...
Saving to ./mlp_best.pkl done. Time elapsed: 0.342858 seconds

In [5]:
ls


README                       mlp_tutorial_part_2.yaml     mlp_tutorial_part_4.yaml     tests/
mlp_best.pkl                 mlp_tutorial_part_3.yaml     multilayer_perceptron.ipynb

In [9]:
%%bash
pylearn2-print-monitor mlp_best.pkl


epochs seen:  1
time trained:  218.477574825
ave_grad_mult : 0.568428376745
ave_grad_size : 0.569275215102
ave_step_size : 0.293164906817
test_h0_col_norms_max : 6.24084816402
test_h0_col_norms_mean : 3.8330191565
test_h0_col_norms_min : 2.07277098332
test_h0_max_x_max_u : 0.999797012523
test_h0_max_x_mean_u : 0.930507070205
test_h0_max_x_min_u : 0.600885181612
test_h0_mean_x_max_u : 0.86138560511
test_h0_mean_x_mean_u : 0.47684242763
test_h0_mean_x_min_u : 0.171815715135
test_h0_min_x_max_u : 0.410199041785
test_h0_min_x_mean_u : 0.0532412819482
test_h0_min_x_min_u : 0.000194870876317
test_h0_range_x_max_u : 0.995852544072
test_h0_range_x_mean_u : 0.877265788257
test_h0_range_x_min_u : 0.548945839167
test_h0_row_norms_max : 5.89793230281
test_h0_row_norms_mean : 2.99315610991
test_h0_row_norms_min : 0.00719804802815
test_objective : 0.345809614411
test_y_col_norms_max : 2.78234106666
test_y_col_norms_mean : 2.59701149502
test_y_col_norms_min : 2.3810874603
test_y_max_max_class : 0.999821373414
test_y_mean_max_class : 0.844709547442
test_y_min_max_class : 0.206097493724
test_y_misclass : 0.0964
test_y_nll : 0.345809614411
test_y_row_norms_max : 0.705822478407
test_y_row_norms_mean : 0.347877919902
test_y_row_norms_min : 0.0778698200526
total_seconds_last_epoch : 0.0
train_h0_col_norms_max : 6.24084816402
train_h0_col_norms_mean : 3.8330191565
train_h0_col_norms_min : 2.07277098332
train_h0_max_x_max_u : 0.999829597379
train_h0_max_x_mean_u : 0.931275661933
train_h0_max_x_min_u : 0.618205979121
train_h0_mean_x_max_u : 0.858717658701
train_h0_mean_x_mean_u : 0.477121657696
train_h0_mean_x_min_u : 0.178341485107
train_h0_min_x_max_u : 0.385012327626
train_h0_min_x_mean_u : 0.0521292482027
train_h0_min_x_min_u : 0.000150238486259
train_h0_range_x_max_u : 0.996723214144
train_h0_range_x_mean_u : 0.879146413731
train_h0_range_x_min_u : 0.547978559446
train_h0_row_norms_max : 5.89793230281
train_h0_row_norms_mean : 2.99315610991
train_h0_row_norms_min : 0.00719804802815
train_objective : 0.367122860086
train_y_col_norms_max : 2.78234106666
train_y_col_norms_mean : 2.59701149502
train_y_col_norms_min : 2.3810874603
train_y_max_max_class : 0.999852802841
train_y_mean_max_class : 0.837913061583
train_y_min_max_class : 0.200456685509
train_y_misclass : 0.10438
train_y_nll : 0.367122860086
train_y_row_norms_max : 0.705822478407
train_y_row_norms_mean : 0.347877919902
train_y_row_norms_min : 0.0778698200526
training_seconds_this_epoch : 202.669563
valid_h0_col_norms_max : 6.24084816402
valid_h0_col_norms_mean : 3.8330191565
valid_h0_col_norms_min : 2.07277098332
valid_h0_max_x_max_u : 0.999862677883
valid_h0_max_x_mean_u : 0.930968702242
valid_h0_max_x_min_u : 0.640350398959
valid_h0_mean_x_max_u : 0.856678213378
valid_h0_mean_x_mean_u : 0.477206979816
valid_h0_mean_x_min_u : 0.178252463979
valid_h0_min_x_max_u : 0.360575213125
valid_h0_min_x_mean_u : 0.0527645351181
valid_h0_min_x_min_u : 0.000214541742634
valid_h0_range_x_max_u : 0.997314378604
valid_h0_range_x_mean_u : 0.878204167123
valid_h0_range_x_min_u : 0.521885364154
valid_h0_row_norms_max : 5.89793230281
valid_h0_row_norms_mean : 2.99315610991
valid_h0_row_norms_min : 0.00719804802815
valid_objective : 0.334305279604
valid_y_col_norms_max : 2.78234106666
valid_y_col_norms_mean : 2.59701149502
valid_y_col_norms_min : 2.3810874603
valid_y_max_max_class : 0.999953240738
valid_y_mean_max_class : 0.84881891044
valid_y_min_max_class : 0.193943289318
valid_y_misclass : 0.0947
valid_y_nll : 0.334305279604
valid_y_row_norms_max : 0.705822478407
valid_y_row_norms_mean : 0.347877919902
valid_y_row_norms_min : 0.0778698200526

In [10]:
%%bash
pylearn2-show-weights mlp_best.pkl


making weights report
loading model
loading done
loading dataset...
...done
smallest enc weight magnitude: 0.0
mean enc weight magnitude: 0.0182802173879
max enc weight magnitude: 4.66034334324
min norm: 2.07277098332
mean norm: 3.8330191565
max norm: 6.24084816402
/bin/sh: eog: command not found

In [14]:
with open("mlp_tutorial_part_2.yaml", 'r') as f:
    train = f.read()
hyper_params = {'train_stop' : 50000,
                'valid_stop' : 60000,
                'dim_h0' : 500,
                'max_epochs' : 1, # 10000
                'save_path' : '.'}
train = train % (hyper_params)
print train


!obj:pylearn2.train.Train {
    dataset: &train !obj:pylearn2.datasets.mnist.MNIST {
        which_set: 'train',
        start: 0,
        stop: 50000
    },
    model: !obj:pylearn2.models.mlp.MLP {
        layers: [
                 !obj:pylearn2.models.mlp.Sigmoid {
                     layer_name: 'h0',
                     dim: 500,
                     sparse_init: 15,
                 }, !obj:pylearn2.models.mlp.Softmax {
                     layer_name: 'y',
                     n_classes: 10,
                     irange: 0.
                 }
                ],
        nvis: 784,
    },
    algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
        batch_size: 10000,
        line_search_mode: 'exhaustive',
        conjugate: 1,
        updates_per_batch: 10,
        monitoring_dataset:
            {
                'train' : *train,
                'valid' : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'train',
                              start: 50000,
                              stop: 60000
                          },
                'test'  : !obj:pylearn2.datasets.mnist.MNIST {
                              which_set: 'test',
                          }
            },
        termination_criterion: !obj:pylearn2.termination_criteria.And {
            criteria: [
                !obj:pylearn2.termination_criteria.MonitorBased {
                    channel_name: "valid_y_misclass"
                },
                !obj:pylearn2.termination_criteria.EpochCounter {
                    max_epochs: 1
                }
            ]
        }
    },
    extensions: [
        !obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
             channel_name: 'valid_y_misclass',
             save_path: "./mlp_best.pkl"
        },
    ]
}


In [15]:
train = yaml_parse.load(train)
train.main_loop()


compiling begin_record_entry...
compiling begin_record_entry done. Time elapsed: 0.309946 seconds
Monitored channels: 
	ave_grad_mult
	ave_grad_size
	ave_step_size
	test_h0_col_norms_max
	test_h0_col_norms_mean
	test_h0_col_norms_min
	test_h0_max_x_max_u
	test_h0_max_x_mean_u
	test_h0_max_x_min_u
	test_h0_mean_x_max_u
	test_h0_mean_x_mean_u
	test_h0_mean_x_min_u
	test_h0_min_x_max_u
	test_h0_min_x_mean_u
	test_h0_min_x_min_u
	test_h0_range_x_max_u
	test_h0_range_x_mean_u
	test_h0_range_x_min_u
	test_h0_row_norms_max
	test_h0_row_norms_mean
	test_h0_row_norms_min
	test_objective
	test_y_col_norms_max
	test_y_col_norms_mean
	test_y_col_norms_min
	test_y_max_max_class
	test_y_mean_max_class
	test_y_min_max_class
	test_y_misclass
	test_y_nll
	test_y_row_norms_max
	test_y_row_norms_mean
	test_y_row_norms_min
	total_seconds_last_epoch
	train_h0_col_norms_max
	train_h0_col_norms_mean
	train_h0_col_norms_min
	train_h0_max_x_max_u
	train_h0_max_x_mean_u
	train_h0_max_x_min_u
	train_h0_mean_x_max_u
	train_h0_mean_x_mean_u
	train_h0_mean_x_min_u
	train_h0_min_x_max_u
	train_h0_min_x_mean_u
	train_h0_min_x_min_u
	train_h0_range_x_max_u
	train_h0_range_x_mean_u
	train_h0_range_x_min_u
	train_h0_row_norms_max
	train_h0_row_norms_mean
	train_h0_row_norms_min
	train_objective
	train_y_col_norms_max
	train_y_col_norms_mean
	train_y_col_norms_min
	train_y_max_max_class
	train_y_mean_max_class
	train_y_min_max_class
	train_y_misclass
	train_y_nll
	train_y_row_norms_max
	train_y_row_norms_mean
	train_y_row_norms_min
	training_seconds_this_epoch
	valid_h0_col_norms_max
	valid_h0_col_norms_mean
	valid_h0_col_norms_min
	valid_h0_max_x_max_u
	valid_h0_max_x_mean_u
	valid_h0_max_x_min_u
	valid_h0_mean_x_max_u
	valid_h0_mean_x_mean_u
	valid_h0_mean_x_min_u
	valid_h0_min_x_max_u
	valid_h0_min_x_mean_u
	valid_h0_min_x_min_u
	valid_h0_range_x_max_u
	valid_h0_range_x_mean_u
	valid_h0_range_x_min_u
	valid_h0_row_norms_max
	valid_h0_row_norms_mean
	valid_h0_row_norms_min
	valid_objective
	valid_y_col_norms_max
	valid_y_col_norms_mean
	valid_y_col_norms_min
	valid_y_max_max_class
	valid_y_mean_max_class
	valid_y_min_max_class
	valid_y_misclass
	valid_y_nll
	valid_y_row_norms_max
	valid_y_row_norms_mean
	valid_y_row_norms_min
Compiling accum...
graph size: 118
graph size: 113
graph size: 113
Compiling accum done. Time elapsed: 3.557186 seconds
Monitoring step:
	Epochs seen: 0
	Batches seen: 0
	Examples seen: 0
	ave_grad_mult: 0.0
	ave_grad_size: 0.0
	ave_step_size: 0.0
	test_h0_col_norms_max: 6.23503405999
	test_h0_col_norms_mean: 3.82355643971
	test_h0_col_norms_min: 2.06193996111
	test_h0_max_x_max_u: 0.999900672858
	test_h0_max_x_mean_u: 0.909941495671
	test_h0_max_x_min_u: 0.508436836559
	test_h0_mean_x_max_u: 0.901069905001
	test_h0_mean_x_mean_u: 0.476713326581
	test_h0_mean_x_min_u: 0.152832768345
	test_h0_min_x_max_u: 0.480607664972
	test_h0_min_x_mean_u: 0.0718067763455
	test_h0_min_x_min_u: 0.000174344384626
	test_h0_range_x_max_u: 0.98963074706
	test_h0_range_x_mean_u: 0.838134719326
	test_h0_range_x_min_u: 0.461663761987
	test_h0_row_norms_max: 5.89326124667
	test_h0_row_norms_mean: 2.98549156744
	test_h0_row_norms_min: 0.0
	test_objective: 2.30258509299
	test_y_col_norms_max: 0.0
	test_y_col_norms_mean: 0.0
	test_y_col_norms_min: 0.0
	test_y_max_max_class: 0.1
	test_y_mean_max_class: 0.1
	test_y_min_max_class: 0.1
	test_y_misclass: 0.902
	test_y_nll: 2.30258509299
	test_y_row_norms_max: 0.0
	test_y_row_norms_mean: 0.0
	test_y_row_norms_min: 0.0
	total_seconds_last_epoch: 0.0
	train_h0_col_norms_max: 6.23503405999
	train_h0_col_norms_mean: 3.82355643971
	train_h0_col_norms_min: 2.06193996111
	train_h0_max_x_max_u: 0.999884207079
	train_h0_max_x_mean_u: 0.910601234661
	train_h0_max_x_min_u: 0.542480235261
	train_h0_mean_x_max_u: 0.899177645344
	train_h0_mean_x_mean_u: 0.477026786605
	train_h0_mean_x_min_u: 0.158626428409
	train_h0_min_x_max_u: 0.458495451967
	train_h0_min_x_mean_u: 0.0697232989866
	train_h0_min_x_min_u: 0.000107248355934
	train_h0_range_x_max_u: 0.993503615767
	train_h0_range_x_mean_u: 0.840877935674
	train_h0_range_x_min_u: 0.432142549731
	train_h0_row_norms_max: 5.89326124667
	train_h0_row_norms_mean: 2.98549156744
	train_h0_row_norms_min: 0.0
	train_objective: 2.30258509299
	train_y_col_norms_max: 0.0
	train_y_col_norms_mean: 0.0
	train_y_col_norms_min: 0.0
	train_y_max_max_class: 0.1
	train_y_mean_max_class: 0.1
	train_y_min_max_class: 0.1
	train_y_misclass: 0.90136
	train_y_nll: 2.30258509299
	train_y_row_norms_max: 0.0
	train_y_row_norms_mean: 0.0
	train_y_row_norms_min: 0.0
	training_seconds_this_epoch: 0.0
	valid_h0_col_norms_max: 6.23503405999
	valid_h0_col_norms_mean: 3.82355643971
	valid_h0_col_norms_min: 2.06193996111
	valid_h0_max_x_max_u: 0.999902364459
	valid_h0_max_x_mean_u: 0.910734674045
	valid_h0_max_x_min_u: 0.505713638328
	valid_h0_mean_x_max_u: 0.897212634566
	valid_h0_mean_x_mean_u: 0.477113329951
	valid_h0_mean_x_min_u: 0.159442692765
	valid_h0_min_x_max_u: 0.474104176772
	valid_h0_min_x_mean_u: 0.07068185398
	valid_h0_min_x_min_u: 0.000110276493931
	valid_h0_range_x_max_u: 0.994406994152
	valid_h0_range_x_mean_u: 0.840052820065
	valid_h0_range_x_min_u: 0.445501338425
	valid_h0_row_norms_max: 5.89326124667
	valid_h0_row_norms_mean: 2.98549156744
	valid_h0_row_norms_min: 0.0
	valid_objective: 2.30258509299
	valid_y_col_norms_max: 0.0
	valid_y_col_norms_mean: 0.0
	valid_y_col_norms_min: 0.0
	valid_y_max_max_class: 0.1
	valid_y_mean_max_class: 0.1
	valid_y_min_max_class: 0.1
	valid_y_misclass: 0.9009
	valid_y_nll: 2.30258509299
	valid_y_row_norms_max: 0.0
	valid_y_row_norms_mean: 0.0
	valid_y_row_norms_min: 0.0
Saving to ./mlp_best.pkl...
Saving to ./mlp_best.pkl done. Time elapsed: 0.650340 seconds
Time this epoch: 0:03:24.065674
Monitoring step:
	Epochs seen: 1
	Batches seen: 5
	Examples seen: 50000
	ave_grad_mult: 0.568428376745
	ave_grad_size: 0.569275215102
	ave_step_size: 0.293164906817
	test_h0_col_norms_max: 6.24084816402
	test_h0_col_norms_mean: 3.8330191565
	test_h0_col_norms_min: 2.07277098332
	test_h0_max_x_max_u: 0.999797012523
	test_h0_max_x_mean_u: 0.930507070205
	test_h0_max_x_min_u: 0.600885181612
	test_h0_mean_x_max_u: 0.86138560511
	test_h0_mean_x_mean_u: 0.47684242763
	test_h0_mean_x_min_u: 0.171815715135
	test_h0_min_x_max_u: 0.410199041785
	test_h0_min_x_mean_u: 0.0532412819482
	test_h0_min_x_min_u: 0.000194870876317
	test_h0_range_x_max_u: 0.995852544072
	test_h0_range_x_mean_u: 0.877265788257
	test_h0_range_x_min_u: 0.548945839167
	test_h0_row_norms_max: 5.89793230281
	test_h0_row_norms_mean: 2.99315610991
	test_h0_row_norms_min: 0.00719804802815
	test_objective: 0.345809614411
	test_y_col_norms_max: 2.78234106666
	test_y_col_norms_mean: 2.59701149502
	test_y_col_norms_min: 2.3810874603
	test_y_max_max_class: 0.999821373414
	test_y_mean_max_class: 0.844709547442
	test_y_min_max_class: 0.206097493724
	test_y_misclass: 0.0964
	test_y_nll: 0.345809614411
	test_y_row_norms_max: 0.705822478407
	test_y_row_norms_mean: 0.347877919902
	test_y_row_norms_min: 0.0778698200526
	total_seconds_last_epoch: 0.0
	train_h0_col_norms_max: 6.24084816402
	train_h0_col_norms_mean: 3.8330191565
	train_h0_col_norms_min: 2.07277098332
	train_h0_max_x_max_u: 0.999829597379
	train_h0_max_x_mean_u: 0.931275661933
	train_h0_max_x_min_u: 0.618205979121
	train_h0_mean_x_max_u: 0.858717658701
	train_h0_mean_x_mean_u: 0.477121657696
	train_h0_mean_x_min_u: 0.178341485107
	train_h0_min_x_max_u: 0.385012327626
	train_h0_min_x_mean_u: 0.0521292482027
	train_h0_min_x_min_u: 0.000150238486259
	train_h0_range_x_max_u: 0.996723214144
	train_h0_range_x_mean_u: 0.879146413731
	train_h0_range_x_min_u: 0.547978559446
	train_h0_row_norms_max: 5.89793230281
	train_h0_row_norms_mean: 2.99315610991
	train_h0_row_norms_min: 0.00719804802815
	train_objective: 0.367122860086
	train_y_col_norms_max: 2.78234106666
	train_y_col_norms_mean: 2.59701149502
	train_y_col_norms_min: 2.3810874603
	train_y_max_max_class: 0.999852802841
	train_y_mean_max_class: 0.837913061583
	train_y_min_max_class: 0.200456685509
	train_y_misclass: 0.10438
	train_y_nll: 0.367122860086
	train_y_row_norms_max: 0.705822478407
	train_y_row_norms_mean: 0.347877919902
	train_y_row_norms_min: 0.0778698200526
	training_seconds_this_epoch: 204.065674
	valid_h0_col_norms_max: 6.24084816402
	valid_h0_col_norms_mean: 3.8330191565
	valid_h0_col_norms_min: 2.07277098332
	valid_h0_max_x_max_u: 0.999862677883
	valid_h0_max_x_mean_u: 0.930968702242
	valid_h0_max_x_min_u: 0.640350398959
	valid_h0_mean_x_max_u: 0.856678213378
	valid_h0_mean_x_mean_u: 0.477206979816
	valid_h0_mean_x_min_u: 0.178252463979
	valid_h0_min_x_max_u: 0.360575213125
	valid_h0_min_x_mean_u: 0.0527645351181
	valid_h0_min_x_min_u: 0.000214541742634
	valid_h0_range_x_max_u: 0.997314378604
	valid_h0_range_x_mean_u: 0.878204167123
	valid_h0_range_x_min_u: 0.521885364154
	valid_h0_row_norms_max: 5.89793230281
	valid_h0_row_norms_mean: 2.99315610991
	valid_h0_row_norms_min: 0.00719804802815
	valid_objective: 0.334305279604
	valid_y_col_norms_max: 2.78234106666
	valid_y_col_norms_mean: 2.59701149502
	valid_y_col_norms_min: 2.3810874603
	valid_y_max_max_class: 0.999953240738
	valid_y_mean_max_class: 0.84881891044
	valid_y_min_max_class: 0.193943289318
	valid_y_misclass: 0.0947
	valid_y_nll: 0.334305279604
	valid_y_row_norms_max: 0.705822478407
	valid_y_row_norms_mean: 0.347877919902
	valid_y_row_norms_min: 0.0778698200526
Saving to ./mlp_best.pkl...
Saving to ./mlp_best.pkl done. Time elapsed: 0.323518 seconds

In [ ]:
with open("mlp_tutorial_part_3.yaml", 'r') as f:
    train = f.read()
hyper_params = {'train_stop' : 50000,
                'valid_stop' : 60000,
                'dim_h0' : 500,
                'max_epochs' : 1, # 10000
                'save_path' : '.'}
train = train % (hyper_params)
print train
train = yaml_parse.load(train)
train.main_loop()

In [ ]:
with open("mlp_tutorial_part_4.yaml", 'r') as f:
    train = f.read()
hyper_params = {'train_stop' : 50000,
                'valid_stop' : 60000,
                'dim_h0' : 500,
                'max_epochs' : 1, # 10000
                'save_path' : '.'}
train = train % (hyper_params)
print train
train = yaml_parse.load(train)
train.main_loop()