the shape of train set 1200 rows, 1 columns
the shape of test set 2400 rows, 1 columns
the shape of validation set 2400 rows, 1 columns
Train on 1200 samples, validate on 2400 samples
Epoch 0
1200/1200 [==============================] - 72s - loss: 2.1896 - acc.: 0.1258 - val. loss: 2.1806 - val. acc.: 0.1488
Epoch 1
1200/1200 [==============================] - 71s - loss: 2.1738 - acc.: 0.1475 - val. loss: 2.1772 - val. acc.: 0.1488
Epoch 2
1200/1200 [==============================] - 71s - loss: 2.1697 - acc.: 0.1475 - val. loss: 2.1757 - val. acc.: 0.1488
Epoch 3
1200/1200 [==============================] - 74s - loss: 2.1641 - acc.: 0.1583 - val. loss: 2.1598 - val. acc.: 0.2286
Epoch 4
1200/1200 [==============================] - 78s - loss: 2.0644 - acc.: 0.2592 - val. loss: 1.9367 - val. acc.: 0.2936
Epoch 5
1200/1200 [==============================] - 71s - loss: 1.7413 - acc.: 0.3492 - val. loss: 1.2673 - val. acc.: 0.5452
Epoch 6
1200/1200 [==============================] - 81s - loss: 1.5537 - acc.: 0.4483 - val. loss: 0.8332 - val. acc.: 0.7677
Epoch 7
1200/1200 [==============================] - 68s - loss: 0.7499 - acc.: 0.7708 - val. loss: 0.4864 - val. acc.: 0.9071
Epoch 8
1200/1200 [==============================] - 68s - loss: 0.5006 - acc.: 0.8600 - val. loss: 0.4167 - val. acc.: 0.9042
Epoch 9
1200/1200 [==============================] - 67s - loss: 0.4309 - acc.: 0.9017 - val. loss: 0.3850 - val. acc.: 0.9062
Epoch 10
1200/1200 [==============================] - 68s - loss: 0.3503 - acc.: 0.9167 - val. loss: 0.3895 - val. acc.: 0.9062
Epoch 11
1200/1200 [==============================] - 78s - loss: 0.3227 - acc.: 0.9275 - val. loss: 0.3675 - val. acc.: 0.9091
Epoch 12
1200/1200 [==============================] - 75s - loss: 0.3130 - acc.: 0.9333 - val. loss: 0.3726 - val. acc.: 0.9083
Epoch 13
1200/1200 [==============================] - 74s - loss: 0.3092 - acc.: 0.9250 - val. loss: 0.3778 - val. acc.: 0.9124
Epoch 14
1200/1200 [==============================] - 68s - loss: 0.2682 - acc.: 0.9342 - val. loss: 0.3851 - val. acc.: 0.9116
Epoch 15
1200/1200 [==============================] - 67s - loss: 0.2606 - acc.: 0.9408 - val. loss: 0.4001 - val. acc.: 0.9137
Epoch 16
1200/1200 [==============================] - 68s - loss: 0.3060 - acc.: 0.9308 - val. loss: 0.3595 - val. acc.: 0.9120
Epoch 17
1200/1200 [==============================] - 67s - loss: 0.2205 - acc.: 0.9425 - val. loss: 0.3831 - val. acc.: 0.9194
Epoch 18
1200/1200 [==============================] - 67s - loss: 0.2301 - acc.: 0.9417 - val. loss: 0.3744 - val. acc.: 0.9198
Epoch 19
1200/1200 [==============================] - 67s - loss: 0.1975 - acc.: 0.9467 - val. loss: 0.4686 - val. acc.: 0.9174
Epoch 20
1200/1200 [==============================] - 69s - loss: 0.2040 - acc.: 0.9408 - val. loss: 0.4215 - val. acc.: 0.9206
Epoch 21
1200/1200 [==============================] - 68s - loss: 0.2058 - acc.: 0.9475 - val. loss: 0.3931 - val. acc.: 0.9219
Epoch 22
1200/1200 [==============================] - 68s - loss: 0.1900 - acc.: 0.9425 - val. loss: 0.4485 - val. acc.: 0.9215
Epoch 23
1200/1200 [==============================] - 71s - loss: 0.1991 - acc.: 0.9533 - val. loss: 0.4151 - val. acc.: 0.9178
Epoch 24
1200/1200 [==============================] - 71s - loss: 0.1968 - acc.: 0.9525 - val. loss: 0.4220 - val. acc.: 0.9186
Epoch 25
1200/1200 [==============================] - 72s - loss: 0.1896 - acc.: 0.9492 - val. loss: 0.4519 - val. acc.: 0.9182
Epoch 26
1200/1200 [==============================] - 67s - loss: 0.1814 - acc.: 0.9533 - val. loss: 0.4669 - val. acc.: 0.9186
Epoch 27
1200/1200 [==============================] - 80s - loss: 0.1718 - acc.: 0.9583 - val. loss: 0.4472 - val. acc.: 0.9211
Epoch 28
1200/1200 [==============================] - 77s - loss: 0.1612 - acc.: 0.9483 - val. loss: 0.4569 - val. acc.: 0.9215
Epoch 29
1200/1200 [==============================] - 70s - loss: 0.1822 - acc.: 0.9508 - val. loss: 0.4475 - val. acc.: 0.9161
Epoch 30
1200/1200 [==============================] - 68s - loss: 0.1841 - acc.: 0.9542 - val. loss: 0.4402 - val. acc.: 0.9174
Epoch 31
1200/1200 [==============================] - 68s - loss: 0.1702 - acc.: 0.9592 - val. loss: 0.4706 - val. acc.: 0.9161
Epoch 32
1200/1200 [==============================] - 69s - loss: 0.1705 - acc.: 0.9533 - val. loss: 0.4992 - val. acc.: 0.9194
Epoch 33
1200/1200 [==============================] - 68s - loss: 0.1651 - acc.: 0.9583 - val. loss: 0.4516 - val. acc.: 0.9198
Epoch 34
1200/1200 [==============================] - 78s - loss: 0.1565 - acc.: 0.9583 - val. loss: 0.4355 - val. acc.: 0.9211
Epoch 35
1200/1200 [==============================] - 77s - loss: 0.1526 - acc.: 0.9583 - val. loss: 0.4748 - val. acc.: 0.9194
Epoch 36
1200/1200 [==============================] - 71s - loss: 0.1688 - acc.: 0.9583 - val. loss: 0.4790 - val. acc.: 0.9178
Epoch 37
1200/1200 [==============================] - 73s - loss: 0.1490 - acc.: 0.9625 - val. loss: 0.5161 - val. acc.: 0.9202
Epoch 38
1200/1200 [==============================] - 72s - loss: 0.1327 - acc.: 0.9642 - val. loss: 0.5444 - val. acc.: 0.9190
Epoch 39
1200/1200 [==============================] - 71s - loss: 0.1641 - acc.: 0.9575 - val. loss: 0.4800 - val. acc.: 0.9190
Epoch 40
1200/1200 [==============================] - 67s - loss: 0.1469 - acc.: 0.9625 - val. loss: 0.5221 - val. acc.: 0.9202
Epoch 41
1200/1200 [==============================] - 71s - loss: 0.1537 - acc.: 0.9583 - val. loss: 0.5261 - val. acc.: 0.9174
Epoch 42
1200/1200 [==============================] - 70s - loss: 0.1440 - acc.: 0.9525 - val. loss: 0.4796 - val. acc.: 0.9169
Epoch 43
1200/1200 [==============================] - 67s - loss: 0.1317 - acc.: 0.9658 - val. loss: 0.5776 - val. acc.: 0.9186
Epoch 44
1200/1200 [==============================] - 67s - loss: 0.1298 - acc.: 0.9617 - val. loss: 0.5543 - val. acc.: 0.9194
Epoch 45
1200/1200 [==============================] - 67s - loss: 0.1433 - acc.: 0.9575 - val. loss: 0.5781 - val. acc.: 0.9186
Epoch 46
1200/1200 [==============================] - 67s - loss: 0.1417 - acc.: 0.9617 - val. loss: 0.5296 - val. acc.: 0.9194
Epoch 47
1200/1200 [==============================] - 73s - loss: 0.1298 - acc.: 0.9650 - val. loss: 0.5829 - val. acc.: 0.9206
Epoch 48
1200/1200 [==============================] - 70s - loss: 0.1289 - acc.: 0.9633 - val. loss: 0.5037 - val. acc.: 0.9215
Epoch 49
1200/1200 [==============================] - 74s - loss: 0.1508 - acc.: 0.9600 - val. loss: 0.4608 - val. acc.: 0.9215
Test score : 0.427060957735
Test accuracy : 0.932565789474
Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x10f5464d0>