In [25]:
#importing libraries
import numpy as np
import pandas as pd
from sklearn.naive_bayes import BernoulliNB, GaussianNB
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.simplefilter('ignore')
In [26]:
dataframe=pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/chess/king-rook-vs-king-pawn/kr-vs-kp.data')
dataframe.shape
Out[26]:
In [34]:
headers = [x for x in range(0,37)]
dataframe.columns=headers
In [35]:
dataframe.sample(5)
Out[35]:
In [36]:
encoder=LabelEncoder()
for x in dataframe:
dataframe[x]=encoder.fit_transform(dataframe[x])
In [37]:
dataframe.sample(5)
Out[37]:
In [38]:
features=dataframe.columns[:-1]
target=dataframe.columns[-1]
In [44]:
train,test=train_test_split(dataframe,test_size=0.4)
In [45]:
gnb= BernoulliNB()
gnb=gnb.fit(train[features],train[target])
predict=gnb.predict(test[features])
accu=accuracy_score(test[target],predict)*100
accu
Out[45]:
In [46]:
gnb=GaussianNB()
gnb=gnb.fit(train[features],train[target])
gaupredict=gnb.predict(test[features])
gauaccu=accuracy_score(test[target],gaupredict)*100
gauaccu
Out[46]:
In [ ]: