In [1]:
"""
conls
=====

Solve a constrained least squares problem 

    conls(A,b,B,d) -> x 

solves 

   minimize     ||b - Ax||_2
   subject to   Bx = d

when B is p-by-n, p < n, and rank(B) = p, by using the QR factorization
of B' to find a basis for the nullspace of B.
"""
function conls(A,b,B,d)
    m,n = size(A)
    p = size(B,1)
    
    @assert size(B,2) == n "incompatible dimensions for A and B"
    
    # Step 1, QR of B' to get the nullspace
    qrf = qrfact(B')
    R = qrf[:R]
    @assert all(diag(R) != 0) "B is not full-rank"
    
    Q = full(qrf[:Q], thin=false)
    Q1 = view(Q,:,1:p)     # view extracts a submatrix
    Q2 = view(Q,:,(p+1):n) 
    
    # form a solution
    y = R'\d
    # solve the new LS problem
    z = (A*Q2)\(b-A*(Q1*y))
    # recombine the solution
    x = Q1*y + Q2*z
    return x
end


Out[1]:
conls

In [2]:
teams = ["duke","miami","unc","uva","vt"]
data = [ # team 1 team 2, team 1 pts, team 2 pts
    1 2  7 52
    1 3 21 24
    1 4  7 38
    1 5  0 45
    2 3 34 16
    2 4 25 17
    2 5 27  7
    3 4  7  5
    3 5  3 30
    4 5 14 52
]
ngames = size(data,1)
nteams = length(teams)

G = zeros(ngames, nteams)
p = zeros(ngames, 1)

for g=1:ngames
    i = data[g,1]
    j = data[g,2]
    Si = data[g,3]
    Sj = data[g,4]
  
    G[g,i] = 1
    G[g,j] = -1
    p[g] = Si - Sj
end
s1 = conls(G,p,ones(1,nteams),[1.0])


Out[2]:
5×1 Array{Float64,2}:
 -24.6
  18.4
  -7.8
  -3.2
  18.2

In [3]:
sum(s1)


Out[3]:
1.0000000000000107

In [4]:
"""
conls_lagrange
=====

Solve a constrained least squares problem 

    conls(A,b,B,d) -> x, lam

solves 

   minimize     ||b - Ax||_2
   subject to   Bx = d

when B is p-by-n, p < n, and rank(B) = p, by using the augmented
system of normal equations

   [ A'*A  B' ] [  x  ] = [ A'*b]
   [ B     0  ] [ lam ] = [  d  ]

and returns both x and the lagrange multipliers
"""
function conls_lagrange(A,b,B,d)
    m,n = size(A)
    p = size(B,1)
    
    @assert size(B,2) == n "incompatible dimensions for A and B"
    
    # Step 1, form the block system
    M = [A'*A B'; B zeros(p,p) ]

    # Step 2, solve
    z = M\[A'*b; d]

    # Step 3, extract 
    x = z[1:n]
    lam = z[n+1:end]
    
    return x, lam
end


Out[4]:
conls_lagrange

In [5]:
s2,lam = conls_lagrange(G,p,ones(1,nteams),[1.0])


Out[5]:
([-24.6,18.4,-7.8,-3.2,18.2],[-1.61648e-15])