Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


CIFAR-10 Dataset: 171MB [02:06, 1.35MB/s]                              
All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [90]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    return x/256

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


[[[[ 0.48046875  0.84765625  0.47265625]
   [ 0.15625     0.12109375  0.95703125]
   [ 0.14453125  0.1328125   0.67578125]
   ..., 
   [ 0.16015625  0.23828125  0.91796875]
   [ 0.16796875  0.98828125  0.02734375]
   [ 0.7109375   0.1953125   0.1640625 ]]

  [[ 0.6875      0.796875    0.25390625]
   [ 0.99609375  0.82421875  0.0625    ]
   [ 0.76171875  0.0390625   0.67578125]
   ..., 
   [ 0.578125    0.359375    0.2109375 ]
   [ 0.12890625  0.2421875   0.2109375 ]
   [ 0.32421875  0.375       0.9375    ]]

  [[ 0.9609375   0.01171875  0.31640625]
   [ 0.02734375  0.08984375  0.19140625]
   [ 0.8515625   0.23828125  0.85546875]
   ..., 
   [ 0.66796875  0.68359375  0.2421875 ]
   [ 0.13671875  0.734375    0.84375   ]
   [ 0.01953125  0.703125    0.4609375 ]]

  ..., 
  [[ 0.5234375   0.61328125  0.59375   ]
   [ 0.23828125  0.08203125  0.45703125]
   [ 0.28515625  0.671875    0.546875  ]
   ..., 
   [ 0.71875     0.5390625   0.70703125]
   [ 0.59765625  0.65234375  0.2578125 ]
   [ 0.171875    0.58203125  0.62890625]]

  [[ 0.03515625  0.6015625   0.40625   ]
   [ 0.09375     0.234375    0.9375    ]
   [ 0.75        0.6484375   0.11328125]
   ..., 
   [ 0.09765625  0.2421875   0.25      ]
   [ 0.03515625  0.45703125  0.671875  ]
   [ 0.046875    0.76171875  0.828125  ]]

  [[ 0.1015625   0.1484375   0.94140625]
   [ 0.16796875  0.75390625  0.77734375]
   [ 0.89453125  0.46875     0.30859375]
   ..., 
   [ 0.71875     0.84375     0.5859375 ]
   [ 0.5625      0.00390625  0.03515625]
   [ 0.3984375   0.75390625  0.95703125]]]


 [[[ 0.90234375  0.08203125  0.7578125 ]
   [ 0.83203125  0.36328125  0.73046875]
   [ 0.8125      0.4609375   0.9140625 ]
   ..., 
   [ 0.20703125  0.27734375  0.12109375]
   [ 0.81640625  0.359375    0.390625  ]
   [ 0.69140625  0.08203125  0.35546875]]

  [[ 0.28125     0.6640625   0.04296875]
   [ 0.71875     0.6171875   0.85546875]
   [ 0.98046875  0.37890625  0.94921875]
   ..., 
   [ 0.6875      0.52734375  0.375     ]
   [ 0.1875      0.05859375  0.796875  ]
   [ 0.921875    0.375       0.734375  ]]

  [[ 0.95703125  0.16796875  0.12890625]
   [ 0.85546875  0.17578125  0.1171875 ]
   [ 0.4921875   0.046875    0.80859375]
   ..., 
   [ 0.484375    0.28515625  0.41015625]
   [ 0.82421875  0.79296875  0.7890625 ]
   [ 0.91796875  0.54296875  0.2578125 ]]

  ..., 
  [[ 0.31640625  0.73828125  0.88671875]
   [ 0.44140625  0.15625     0.03515625]
   [ 0.609375    0.89453125  0.54296875]
   ..., 
   [ 0.140625    0.36328125  0.23046875]
   [ 0.7109375   0.3515625   0.44140625]
   [ 0.421875    0.99609375  0.8125    ]]

  [[ 0.81640625  0.33984375  0.40234375]
   [ 0.24609375  0.08203125  0.3671875 ]
   [ 0.43359375  0.07421875  0.13671875]
   ..., 
   [ 0.65234375  0.84375     0.55859375]
   [ 0.5         0.3046875   0.203125  ]
   [ 0.44140625  0.19140625  0.46484375]]

  [[ 0.93359375  0.97265625  0.91015625]
   [ 0.1796875   0.77734375  0.65234375]
   [ 0.03515625  0.30078125  0.375     ]
   ..., 
   [ 0.46484375  0.171875    0.875     ]
   [ 0.97265625  0.4375      0.78515625]
   [ 0.60546875  0.08984375  0.28125   ]]]


 [[[ 0.515625    0.33203125  0.63671875]
   [ 0.41796875  0.3828125   0.41796875]
   [ 0.8359375   0.05078125  0.73828125]
   ..., 
   [ 0.1484375   0.0546875   0.36328125]
   [ 0.1171875   0.09375     0.98046875]
   [ 0.70703125  0.56640625  0.6484375 ]]

  [[ 0.38671875  0.3359375   0.32421875]
   [ 0.92578125  0.6953125   0.8125    ]
   [ 0.94921875  0.2890625   0.625     ]
   ..., 
   [ 0.33203125  0.6484375   0.83984375]
   [ 0.50390625  0.89453125  0.98046875]
   [ 0.109375    0.5234375   0.3984375 ]]

  [[ 0.62109375  0.09375     0.64453125]
   [ 0.546875    0.27734375  0.140625  ]
   [ 0.89453125  0.02734375  0.15234375]
   ..., 
   [ 0.6875      0.921875    0.50390625]
   [ 0.0703125   0.41015625  0.3203125 ]
   [ 0.7734375   0.19921875  0.328125  ]]

  ..., 
  [[ 0.51953125  0.12890625  0.1875    ]
   [ 0.05078125  0.79296875  0.5234375 ]
   [ 0.40234375  0.6875      0.875     ]
   ..., 
   [ 0.734375    0.6015625   0.08203125]
   [ 0.6796875   0.75        0.91015625]
   [ 0.4765625   0.17578125  0.4921875 ]]

  [[ 0.56640625  0.90625     0.34765625]
   [ 0.96484375  0.58984375  0.21875   ]
   [ 0.8828125   0.70703125  0.75390625]
   ..., 
   [ 0.2578125   0.90234375  0.296875  ]
   [ 0.33984375  0.15234375  0.59765625]
   [ 0.02734375  0.6796875   0.53125   ]]

  [[ 0.953125    0.08984375  0.484375  ]
   [ 0.98046875  0.24609375  0.765625  ]
   [ 0.1015625   0.77734375  0.86328125]
   ..., 
   [ 0.11328125  0.17578125  0.23046875]
   [ 0.58984375  0.22265625  0.390625  ]
   [ 0.32421875  0.3984375   0.3359375 ]]]


 ..., 
 [[[ 0.078125    0.98828125  0.85546875]
   [ 0.01171875  0.828125    0.03125   ]
   [ 0.59375     0.703125    0.54296875]
   ..., 
   [ 0.75390625  0.9921875   0.83984375]
   [ 0.08984375  0.28125     0.984375  ]
   [ 0.9140625   0.5390625   0.41796875]]

  [[ 0.78125     0.859375    0.6953125 ]
   [ 0.01171875  0.671875    0.71484375]
   [ 0.09765625  0.07421875  0.16796875]
   ..., 
   [ 0.87109375  0.97265625  0.85546875]
   [ 0.5859375   0.8046875   0.7421875 ]
   [ 0.0078125   0.9140625   0.9140625 ]]

  [[ 0.0390625   0.81640625  0.73828125]
   [ 0.7734375   0.9921875   0.02734375]
   [ 0.1875      0.859375    0.41015625]
   ..., 
   [ 0.12890625  0.40234375  0.703125  ]
   [ 0.328125    0.46875     0.99609375]
   [ 0.83984375  0.48828125  0.11328125]]

  ..., 
  [[ 0.29296875  0.78125     0.66015625]
   [ 0.671875    0.359375    0.4453125 ]
   [ 0.16796875  0.87890625  0.1171875 ]
   ..., 
   [ 0.265625    0.96875     0.12890625]
   [ 0.15234375  0.21484375  0.1328125 ]
   [ 0.84375     0.73828125  0.75390625]]

  [[ 0.67578125  0.28515625  0.1484375 ]
   [ 0.57421875  0.7734375   0.96484375]
   [ 0.12890625  0.015625    0.63671875]
   ..., 
   [ 0.984375    0.35546875  0.56640625]
   [ 0.85546875  0.55859375  0.0234375 ]
   [ 0.9375      0.50390625  0.765625  ]]

  [[ 0.5         0.16015625  0.97265625]
   [ 0.59375     0.265625    0.3203125 ]
   [ 0.05859375  0.33203125  0.63671875]
   ..., 
   [ 0.04296875  0.91796875  0.75      ]
   [ 0.          0.3046875   0.953125  ]
   [ 0.45703125  0.984375    0.85546875]]]


 [[[ 0.33203125  0.05078125  0.6484375 ]
   [ 0.66796875  0.32421875  0.87109375]
   [ 0.99609375  0.10546875  0.4453125 ]
   ..., 
   [ 0.91015625  0.1875      0.875     ]
   [ 0.62890625  0.0703125   0.8671875 ]
   [ 0.8828125   0.7578125   0.328125  ]]

  [[ 0.8046875   0.24609375  0.28125   ]
   [ 0.17578125  0.95703125  0.67578125]
   [ 0.6484375   0.87109375  0.84765625]
   ..., 
   [ 0.40234375  0.3203125   0.7109375 ]
   [ 0.7578125   0.60546875  0.30078125]
   [ 0.53125     0.2109375   0.28515625]]

  [[ 0.55078125  0.4609375   0.109375  ]
   [ 0.31640625  0.8828125   0.87109375]
   [ 0.1796875   0.2265625   0.7890625 ]
   ..., 
   [ 0.0625      0.07421875  0.296875  ]
   [ 0.08203125  0.6484375   0.4921875 ]
   [ 0.671875    0.60546875  0.80859375]]

  ..., 
  [[ 0.0546875   0.5859375   0.5234375 ]
   [ 0.78125     0.73828125  0.9921875 ]
   [ 0.98828125  0.78125     0.83203125]
   ..., 
   [ 0.8203125   0.55859375  0.671875  ]
   [ 0.33203125  0.0234375   0.515625  ]
   [ 0.3125      0.015625    0.45703125]]

  [[ 0.17578125  0.87890625  0.671875  ]
   [ 0.5859375   0.51953125  0.10546875]
   [ 0.390625    0.546875    0.23828125]
   ..., 
   [ 0.06640625  0.875       0.265625  ]
   [ 0.65234375  0.41796875  0.796875  ]
   [ 0.5234375   0.1015625   0.6328125 ]]

  [[ 0.6015625   0.69140625  0.4609375 ]
   [ 0.296875    0.93359375  0.72265625]
   [ 0.41015625  0.80859375  0.67578125]
   ..., 
   [ 0.2421875   0.0234375   0.0703125 ]
   [ 0.6015625   0.1328125   0.8203125 ]
   [ 0.6328125   0.015625    0.56640625]]]


 [[[ 0.90625     0.8515625   0.890625  ]
   [ 0.6953125   0.90234375  0.35546875]
   [ 0.64453125  0.68359375  0.50390625]
   ..., 
   [ 0.8828125   0.671875    0.14453125]
   [ 0.98828125  0.984375    0.37109375]
   [ 0.5234375   0.23828125  0.25390625]]

  [[ 0.48828125  0.42578125  0.48828125]
   [ 0.453125    0.890625    0.19140625]
   [ 0.1328125   0.18359375  0.55859375]
   ..., 
   [ 0.4921875   0.2578125   0.5703125 ]
   [ 0.42578125  0.22265625  0.08203125]
   [ 0.96875     0.6171875   0.703125  ]]

  [[ 0.53125     0.92578125  0.203125  ]
   [ 0.82421875  0.1796875   0.40625   ]
   [ 0.703125    0.87890625  0.24609375]
   ..., 
   [ 0.36328125  0.22265625  0.62890625]
   [ 0.54296875  0.90234375  0.84375   ]
   [ 0.2890625   0.546875    0.5625    ]]

  ..., 
  [[ 0.08984375  0.87109375  0.60546875]
   [ 0.83984375  0.59765625  0.62890625]
   [ 0.89453125  0.7890625   0.375     ]
   ..., 
   [ 0.6328125   0.70703125  0.75      ]
   [ 0.5546875   0.26953125  0.39453125]
   [ 0.29296875  0.4375      0.78125   ]]

  [[ 0.671875    0.90625     0.03515625]
   [ 0.5234375   0.546875    0.484375  ]
   [ 0.80078125  0.38671875  0.17578125]
   ..., 
   [ 0.75        0.03515625  0.88671875]
   [ 0.69921875  0.09765625  0.11328125]
   [ 0.50390625  0.44140625  0.91796875]]

  [[ 0.234375    0.46875     0.671875  ]
   [ 0.21875     0.29296875  0.5703125 ]
   [ 0.81640625  0.04296875  0.25390625]
   ..., 
   [ 0.0078125   0.26171875  0.1953125 ]
   [ 0.65234375  0.859375    0.18359375]
   [ 0.96484375  0.73828125  0.6015625 ]]]]
Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [10]:
from sklearn import preprocessing
labels=[0,1,2,3,4,5,6,7,8,9]
lb=preprocessing.LabelBinarizer()
lb.fit(labels)
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    return lb.transform(x)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [11]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [3]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [6]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    input_shape=[None,image_shape[0],image_shape[1],image_shape[2]]
    # TODO: Implement Function
    return tf.placeholder(tf.float32,shape=input_shape,name='x')


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,shape=[None,n_classes],name='y')


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,name='keep_prob')


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [72]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    
    input_depth = x_tensor.shape[3].value
    weights_shape = [conv_ksize[0], conv_ksize[1],input_depth, conv_num_outputs]
    weights = tf.Variable(tf.truncated_normal(weights_shape,mean=0.0,stddev=0.1)) 
    bias = tf.Variable(tf.zeros(conv_num_outputs))
    conv = tf.nn.conv2d(x_tensor, weights, strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME')
    conv = tf.nn.bias_add(conv,bias)
    conv = tf.nn.max_pool(conv,ksize=[1,pool_ksize[0],pool_ksize[1],1],strides=[1,pool_strides[0],pool_strides[1],1],padding='SAME')
    conv = tf.nn.elu(conv)
    return conv 


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [73]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    x_tensor = tf.reshape(x_tensor, [-1, x_tensor.shape[1].value*x_tensor.shape[2].value*x_tensor.shape[3].value])
    return x_tensor


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [87]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    return tf.contrib.layers.fully_connected(x_tensor,num_outputs,activation_fn=tf.nn.relu)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [88]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    return tf.contrib.layers.fully_connected(x_tensor,num_outputs,activation_fn=None)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [95]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    
    x_tensor=conv2d_maxpool(x, 32, (3,3), (1,1), (2,2), (2,2))
    x_tensor=conv2d_maxpool(x_tensor, 64, (3,3), (1,1), (2,2), (2,2))
    x_tensor=conv2d_maxpool(x_tensor, 128, (3,3), (1,1), (2,2), (2,2))
    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    x_tensor=flatten(x_tensor)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    x_tensor=fully_conn(x_tensor, 32)
    x_tensor=fully_conn(x_tensor, 64)
    x_tensor=fully_conn(x_tensor, 128)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob)
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    num_outputs=10
    x_tensor=output(x_tensor, num_outputs)
    
    
    # TODO: return output
    return x_tensor


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [90]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={
                x: feature_batch,
                y: label_batch,
                keep_prob: keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [91]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    loss = session.run(cost, feed_dict={x: feature_batch,y: label_batch,keep_prob: 1.})
    print('Loss: {}'.format(loss))
    
    valid_acc = session.run(accuracy, feed_dict={x: valid_features,y: valid_labels,keep_prob: 1.})
    print('Validation Accuracy: {}'.format(valid_acc))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [97]:
# TODO: Tune Parameters
epochs = 10
batch_size = 128
keep_probability = 0.5

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [96]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss: 2.121335983276367
Validation Accuracy: 0.2825999855995178
Epoch  2, CIFAR-10 Batch 1:  Loss: 1.821290373802185
Validation Accuracy: 0.34459999203681946
Epoch  3, CIFAR-10 Batch 1:  Loss: 1.499361276626587
Validation Accuracy: 0.44760000705718994
Epoch  4, CIFAR-10 Batch 1:  Loss: 1.2517375946044922
Validation Accuracy: 0.4812000095844269

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [98]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss: 2.23311185836792
Validation Accuracy: 0.19840000569820404
Epoch  1, CIFAR-10 Batch 2:  Loss: 1.8215017318725586
Validation Accuracy: 0.34599998593330383
Epoch  1, CIFAR-10 Batch 3:  Loss: 1.4693963527679443
Validation Accuracy: 0.3962000012397766
Epoch  1, CIFAR-10 Batch 4:  Loss: 1.4999051094055176
Validation Accuracy: 0.43799999356269836
Epoch  1, CIFAR-10 Batch 5:  Loss: 1.4385759830474854
Validation Accuracy: 0.48840001225471497
Epoch  2, CIFAR-10 Batch 1:  Loss: 1.401365041732788
Validation Accuracy: 0.5217999815940857
Epoch  2, CIFAR-10 Batch 2:  Loss: 1.359205961227417
Validation Accuracy: 0.5224000215530396
Epoch  2, CIFAR-10 Batch 3:  Loss: 0.999459445476532
Validation Accuracy: 0.5278000235557556
Epoch  2, CIFAR-10 Batch 4:  Loss: 1.0569616556167603
Validation Accuracy: 0.5722000002861023
Epoch  2, CIFAR-10 Batch 5:  Loss: 1.0590487718582153
Validation Accuracy: 0.5667999982833862
Epoch  3, CIFAR-10 Batch 1:  Loss: 1.0489773750305176
Validation Accuracy: 0.5853999853134155
Epoch  3, CIFAR-10 Batch 2:  Loss: 1.0196796655654907
Validation Accuracy: 0.6018000245094299
Epoch  3, CIFAR-10 Batch 3:  Loss: 0.7708076238632202
Validation Accuracy: 0.6096000075340271
Epoch  3, CIFAR-10 Batch 4:  Loss: 0.8926475644111633
Validation Accuracy: 0.6047999858856201
Epoch  3, CIFAR-10 Batch 5:  Loss: 0.8125567436218262
Validation Accuracy: 0.6164000034332275
Epoch  4, CIFAR-10 Batch 1:  Loss: 0.8723453283309937
Validation Accuracy: 0.6158000230789185
Epoch  4, CIFAR-10 Batch 2:  Loss: 0.794741690158844
Validation Accuracy: 0.6295999884605408
Epoch  4, CIFAR-10 Batch 3:  Loss: 0.6354233622550964
Validation Accuracy: 0.6377999782562256
Epoch  4, CIFAR-10 Batch 4:  Loss: 0.7547049522399902
Validation Accuracy: 0.6230000257492065
Epoch  4, CIFAR-10 Batch 5:  Loss: 0.5598846077919006
Validation Accuracy: 0.6421999931335449
Epoch  5, CIFAR-10 Batch 1:  Loss: 0.7436392307281494
Validation Accuracy: 0.6370000243186951
Epoch  5, CIFAR-10 Batch 2:  Loss: 0.5858772993087769
Validation Accuracy: 0.6592000126838684
Epoch  5, CIFAR-10 Batch 3:  Loss: 0.4615461230278015
Validation Accuracy: 0.649399995803833
Epoch  5, CIFAR-10 Batch 4:  Loss: 0.5587372779846191
Validation Accuracy: 0.6592000126838684
Epoch  5, CIFAR-10 Batch 5:  Loss: 0.433735191822052
Validation Accuracy: 0.6675999760627747
Epoch  6, CIFAR-10 Batch 1:  Loss: 0.5948876142501831
Validation Accuracy: 0.6538000106811523
Epoch  6, CIFAR-10 Batch 2:  Loss: 0.48232120275497437
Validation Accuracy: 0.6620000004768372
Epoch  6, CIFAR-10 Batch 3:  Loss: 0.3743320405483246
Validation Accuracy: 0.6782000064849854
Epoch  6, CIFAR-10 Batch 4:  Loss: 0.5083451271057129
Validation Accuracy: 0.6589999794960022
Epoch  6, CIFAR-10 Batch 5:  Loss: 0.36029088497161865
Validation Accuracy: 0.6543999910354614
Epoch  7, CIFAR-10 Batch 1:  Loss: 0.5455135107040405
Validation Accuracy: 0.659600019454956
Epoch  7, CIFAR-10 Batch 2:  Loss: 0.39804452657699585
Validation Accuracy: 0.6690000295639038
Epoch  7, CIFAR-10 Batch 3:  Loss: 0.24864821135997772
Validation Accuracy: 0.6787999868392944
Epoch  7, CIFAR-10 Batch 4:  Loss: 0.35790854692459106
Validation Accuracy: 0.6769999861717224
Epoch  7, CIFAR-10 Batch 5:  Loss: 0.2991076111793518
Validation Accuracy: 0.6601999998092651
Epoch  8, CIFAR-10 Batch 1:  Loss: 0.48649635910987854
Validation Accuracy: 0.6603999733924866
Epoch  8, CIFAR-10 Batch 2:  Loss: 0.2868272364139557
Validation Accuracy: 0.6790000200271606
Epoch  8, CIFAR-10 Batch 3:  Loss: 0.2068406343460083
Validation Accuracy: 0.6863999962806702
Epoch  8, CIFAR-10 Batch 4:  Loss: 0.33209091424942017
Validation Accuracy: 0.6855999827384949
Epoch  8, CIFAR-10 Batch 5:  Loss: 0.3168450891971588
Validation Accuracy: 0.6636000275611877
Epoch  9, CIFAR-10 Batch 1:  Loss: 0.41432109475135803
Validation Accuracy: 0.6876000165939331
Epoch  9, CIFAR-10 Batch 2:  Loss: 0.2492385357618332
Validation Accuracy: 0.670199990272522
Epoch  9, CIFAR-10 Batch 3:  Loss: 0.21506376564502716
Validation Accuracy: 0.6955999732017517
Epoch  9, CIFAR-10 Batch 4:  Loss: 0.29562753438949585
Validation Accuracy: 0.6818000078201294
Epoch  9, CIFAR-10 Batch 5:  Loss: 0.23806354403495789
Validation Accuracy: 0.6934000253677368
Epoch 10, CIFAR-10 Batch 1:  Loss: 0.36260443925857544
Validation Accuracy: 0.6868000030517578
Epoch 10, CIFAR-10 Batch 2:  Loss: 0.180862158536911
Validation Accuracy: 0.6863999962806702
Epoch 10, CIFAR-10 Batch 3:  Loss: 0.17582395672798157
Validation Accuracy: 0.6845999956130981
Epoch 10, CIFAR-10 Batch 4:  Loss: 0.19853836297988892
Validation Accuracy: 0.6805999875068665
Epoch 10, CIFAR-10 Batch 5:  Loss: 0.20714429020881653
Validation Accuracy: 0.6940000057220459

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [99]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


INFO:tensorflow:Restoring parameters from ./image_classification
Testing Accuracy: 0.6973892405063291

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.