In [3]:
%matplotlib inline
import gym
import itertools
import matplotlib
import numpy as np
import pandas as pd
import sys
if "../" not in sys.path:
sys.path.append("../")
from collections import defaultdict
from lib.envs.cliff_walking import CliffWalkingEnv
from lib import plotting
matplotlib.style.use('ggplot')
In [4]:
env = CliffWalkingEnv()
In [5]:
def make_epsilon_greedy_policy(Q, epsilon, nA):
"""
Creates an epsilon-greedy policy based on a given Q-function and epsilon.
Args:
Q: A dictionary that maps from state -> action-values.
Each value is a numpy array of length nA (see below)
epsilon: The probability to select a random action. Float between 0 and 1.
nA: Number of actions in the environment.
Returns:
A function that takes the observation as an argument and returns
the probabilities for each action in the form of a numpy array of length nA.
"""
def policy_fn(observation):
A = np.ones(nA, dtype=float) * epsilon / nA
best_action = np.argmax(Q[observation])
A[best_action] += (1.0 - epsilon)
return A
return policy_fn
In [6]:
def q_learning(env, num_episodes, discount_factor=1.0, alpha=0.5, epsilon=0.1):
"""
Q-Learning algorithm: Off-policy TD control. Finds the optimal greedy policy
while following an epsilon-greedy policy
Args:
env: OpenAI environment.
num_episodes: Number of episodes to run for.
discount_factor: Gamma discount factor.
alpha: TD learning rate.
epsilon: Chance to sample a random action. Float between 0 and 1.
Returns:
A tuple (Q, episode_lengths).
Q is the optimal action-value function, a dictionary mapping state -> action values.
stats is an EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
"""
# The final action-value function.
# A nested dictionary that maps state -> (action -> action-value).
Q = defaultdict(lambda: np.zeros(env.action_space.n))
# Keeps track of useful statistics
stats = plotting.EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes))
# The policy we're following
policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n)
for i_episode in range(num_episodes):
# Print out which episode we're on, useful for debugging.
if (i_episode + 1) % 100 == 0:
print("\rEpisode {}/{}.".format(i_episode + 1, num_episodes), end="")
sys.stdout.flush()
# Implement this!
return Q, stats
In [7]:
Q, stats = q_learning(env, 500)
In [8]:
plotting.plot_episode_stats(stats)
In [ ]: