In [ ]:
%matplotlib inline
import gym
import matplotlib
import numpy as np
import sys
from collections import defaultdict
if "../" not in sys.path:
sys.path.append("../")
from lib.envs.blackjack import BlackjackEnv
from lib import plotting
matplotlib.style.use('ggplot')
In [ ]:
env = BlackjackEnv()
In [ ]:
def create_random_policy(nA):
"""
Creates a random policy function.
Args:
nA: Number of actions in the environment.
Returns:
A function that takes an observation as input and returns a vector
of action probabilities
"""
A = np.ones(nA, dtype=float) / nA
def policy_fn(observation):
return A
return policy_fn
In [ ]:
def create_greedy_policy(Q):
"""
Creates a greedy policy based on Q values.
Args:
Q: A dictionary that maps from state -> action values
Returns:
A function that takes an observation as input and returns a vector
of action probabilities.
"""
def policy_fn(observation):
pass
# Implement this!
return policy_fn
In [ ]:
def mc_control_importance_sampling(env, num_episodes, behavior_policy, discount_factor=1.0):
"""
Monte Carlo Control Off-Policy Control using Weighted Importance Sampling.
Finds an optimal greedy policy.
Args:
env: OpenAI gym environment.
num_episodes: Number of episodes to sample.
behavior_policy: The behavior to follow while generating episodes.
A function that given an observation returns a vector of probabilities for each action.
discount_factor: Gamma discount factor.
Returns:
A tuple (Q, policy).
Q is a dictionary mapping state -> action values.
policy is a function that takes an observation as an argument and returns
action probabilities. This is the optimal greedy policy.
"""
# The final action-value function.
# A dictionary that maps state -> action values
Q = defaultdict(lambda: np.zeros(env.action_space.n))
# Our greedily policy we want to learn
target_policy = create_greedy_policy(Q)
# Implement this!
return Q, target_policy
In [ ]:
random_policy = create_random_policy(env.action_space.n)
Q, policy = mc_control_importance_sampling(env, num_episodes=500000, behavior_policy=random_policy)
In [ ]:
# For plotting: Create value function from action-value function
# by picking the best action at each state
V = defaultdict(float)
for state, action_values in Q.items():
action_value = np.max(action_values)
V[state] = action_value
plotting.plot_value_function(V, title="Optimal Value Function")
In [ ]: