In [ ]:
%matplotlib inline

import gym
import matplotlib
import numpy as np
import sys

from collections import defaultdict
if "../" not in sys.path:
from lib.envs.blackjack import BlackjackEnv
from lib import plotting'ggplot')

In [ ]:
env = BlackjackEnv()

In [ ]:
def make_epsilon_greedy_policy(Q, epsilon, nA):
    Creates an epsilon-greedy policy based on a given Q-function and epsilon.
        Q: A dictionary that maps from state -> action-values.
            Each value is a numpy array of length nA (see below)
        epsilon: The probability to select a random action . float between 0 and 1.
        nA: Number of actions in the environment.
        A function that takes the observation as an argument and returns
        the probabilities for each action in the form of a numpy array of length nA.
    def policy_fn(observation):
        # Implement this!
    return policy_fn

In [ ]:
def mc_control_epsilon_greedy(env, num_episodes, discount_factor=1.0, epsilon=0.1):
    Monte Carlo Control using Epsilon-Greedy policies.
    Finds an optimal epsilon-greedy policy.
        env: OpenAI gym environment.
        num_episodes: Number of episodes to sample.
        discount_factor: Gamma discount factor.
        epsilon: Chance the sample a random action. Float betwen 0 and 1.
        A tuple (Q, policy).
        Q is a dictionary mapping state -> action values.
        policy is a function that takes an observation as an argument and returns
        action probabilities
    # Keeps track of sum and count of returns for each state
    # to calculate an average. We could use an array to save all
    # returns (like in the book) but that's memory inefficient.
    returns_sum = defaultdict(float)
    returns_count = defaultdict(float)
    # The final action-value function.
    # A nested dictionary that maps state -> (action -> action-value).
    Q = defaultdict(lambda: np.zeros(env.action_space.n))
    # The policy we're following
    policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n)
    # Implement this!
    return Q, policy

In [ ]:
Q, policy = mc_control_epsilon_greedy(env, num_episodes=500000, epsilon=0.1)

In [ ]:
# For plotting: Create value function from action-value function
# by picking the best action at each state
V = defaultdict(float)
for state, actions in Q.items():
    action_value = np.max(actions)
    V[state] = action_value
plotting.plot_value_function(V, title="Optimal Value Function")

In [ ]: