In [3]:
import psycopg2
import pandas as pd
import sqlalchemy as sa
import time
import seaborn as sns
import re
In [36]:
! pip install pandasql
In [2]:
! pip install psycopg2
In [4]:
parameters = {
'username': 'postgres',
'password': 'root',
'server': 'localhost',
'database': 'ajay'
}
In [6]:
connection= 'postgresql://{username}:{password}@{server}:5432/{database}'.format(**parameters)
In [17]:
print (connection)
In [18]:
engine = sa.create_engine(connection, encoding="utf-8")
In [19]:
insp = sa.inspect(engine)
In [10]:
print(insp)
In [11]:
db_list = insp.get_schema_names()
print(db_list)
In [12]:
engine.table_names()
Out[12]:
In [13]:
data3= pd.read_sql_query('select * from "sales" limit 10',con=engine)
In [14]:
data3.info()
In [14]:
data3
Out[14]:
In [29]:
data5= pd.read_sql_query('select * from "sales" limit 20',con=engine)
In [30]:
data5
Out[30]:
In [23]:
import pandasql as pdsql
In [32]:
str1="select * from data5 limit 5;"
In [33]:
df11=pdsql.sqldf(str1)
In [34]:
df11
Out[34]:
In [35]:
type(data5)
Out[35]:
In [43]:
data5= pd.read_sql_query('select * from "sales" limit 250',con=engine)
In [47]:
data5.head()
Out[47]:
In [44]:
str2="select avg(sales) from data5 ;"
In [45]:
df111=pdsql.sqldf(str2)
In [46]:
df111
Out[46]:
In [ ]: