In [4]:
import psycopg2
import pandas as pd
import sqlalchemy as sa
import time
import seaborn as sns
import re

In [2]:
! pip install psycopg2


Requirement already satisfied: psycopg2 in c:\users\dell\anaconda3\lib\site-packages

In [5]:
parameters = { 
               'username': 'postgres', 
               'password': 'root',
               'server':   'localhost',
               'database': 'ajay'
             }

In [6]:
connection= 'postgresql://{username}:{password}@{server}:5432/{database}'.format(**parameters)

In [7]:
print (connection)


postgresql://postgres:root@localhost:5432/ajay

In [9]:
engine = sa.create_engine(connection, encoding="utf-8")

In [10]:
insp = sa.inspect(engine)

In [11]:
db_list = insp.get_schema_names()
print(db_list)


['information_schema', 'public']

In [12]:
engine.table_names()


Out[12]:
['sales', 'iris']

In [13]:
data3= pd.read_sql_query('select * from "sales" limit 10',con=engine)

In [14]:
data3.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
customer_id    10 non-null int64
sales          10 non-null int64
date           10 non-null object
product_id     10 non-null int64
dtypes: int64(3), object(1)
memory usage: 400.0+ bytes

In [15]:
data3


Out[15]:
customer_id sales date product_id
0 10001 5230 2017-02-07 524
1 10002 2781 2017-05-12 469
2 10003 2083 2016-12-18 917
3 10004 214 2015-01-19 354
4 10005 9407 2016-09-26 292
5 10006 4705 2015-10-17 380
6 10007 4729 2016-01-02 469
7 10008 7715 2015-09-12 480
8 10009 9898 2015-04-05 611
9 10010 5797 2015-08-13 959

In [16]:
data5= pd.read_sql_query('select * from "iris" limit 10',con=engine)

In [17]:
data5


Out[17]:
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa
6 4.6 3.4 1.4 0.3 setosa
7 5.0 3.4 1.5 0.2 setosa
8 4.4 2.9 1.4 0.2 setosa
9 4.9 3.1 1.5 0.1 setosa

In [ ]: